Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
EMBO J ; 43(6): 904-930, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38337057

ABSTRACT

Mitochondrial outer membrane permeabilisation (MOMP) is often essential for apoptosis, by enabling cytochrome c release that leads to caspase activation and rapid cell death. Recently, MOMP has been shown to be inherently pro-inflammatory with emerging cellular roles, including its ability to elicit anti-tumour immunity. Nonetheless, how MOMP triggers inflammation and how the cell regulates this remains poorly defined. We find that upon MOMP, many proteins localised either to inner or outer mitochondrial membranes are ubiquitylated in a promiscuous manner. This extensive ubiquitylation serves to recruit the essential adaptor molecule NEMO, leading to the activation of pro-inflammatory NF-κB signalling. We show that disruption of mitochondrial outer membrane integrity through different means leads to the engagement of a similar pro-inflammatory signalling platform. Therefore, mitochondrial integrity directly controls inflammation, such that permeabilised mitochondria initiate NF-κB signalling.


Subject(s)
NF-kappa B , Ubiquitin , Humans , NF-kappa B/genetics , NF-kappa B/metabolism , Ubiquitin/metabolism , Mitochondrial Membranes/metabolism , Mitochondria/metabolism , Apoptosis/physiology , Inflammation/metabolism
2.
EMBO Rep ; 21(4): e49799, 2020 04 03.
Article in English | MEDLINE | ID: mdl-32202065

ABSTRACT

Mitochondria are cellular organelles that orchestrate a vast range of biological processes, from energy production and metabolism to cell death and inflammation. Despite this seemingly symbiotic relationship, mitochondria harbour within them a potent agonist of innate immunity: their own genome. Release of mitochondrial DNA into the cytoplasm and out into the extracellular milieu activates a plethora of different pattern recognition receptors and innate immune responses, including cGAS-STING, TLR9 and inflammasome formation leading to, among others, robust type I interferon responses. In this Review, we discuss how mtDNA can be released from the mitochondria, the various inflammatory pathways triggered by mtDNA release and its myriad biological consequences for health and disease.


Subject(s)
DNA, Mitochondrial , Mitochondria , DNA, Mitochondrial/genetics , Humans , Immunity, Innate/genetics , Inflammation/genetics , Mitochondria/genetics , Receptors, Pattern Recognition
3.
EMBO J ; 38(11)2019 06 03.
Article in English | MEDLINE | ID: mdl-31101675

ABSTRACT

Serving as an innate defence mechanism, invading pathogens elicit a broad inflammatory response in cells. In this issue, Brokatzky et al (2019) report that pathogens can cause activation of BAX/BAK which permeabilises a limited number of mitochondria. Induction of DNA damage, or release of mtDNA, triggers STING-dependent pro-inflammatory cytokine expression and secretion, revealing an unexpected role for the mitochondrial apoptotic machinery in immune defence.


Subject(s)
Mitochondria/genetics , bcl-2 Homologous Antagonist-Killer Protein , Apoptosis , Cytokines , DNA, Mitochondrial
4.
EMBO J ; 37(17)2018 09 03.
Article in English | MEDLINE | ID: mdl-30049712

ABSTRACT

During apoptosis, pro-apoptotic BAX and BAK are activated, causing mitochondrial outer membrane permeabilisation (MOMP), caspase activation and cell death. However, even in the absence of caspase activity, cells usually die following MOMP Such caspase-independent cell death is accompanied by inflammation that requires mitochondrial DNA (mtDNA) activation of cGAS-STING signalling. Because the mitochondrial inner membrane is thought to remain intact during apoptosis, we sought to address how matrix mtDNA could activate the cytosolic cGAS-STING signalling pathway. Using super-resolution imaging, we show that mtDNA is efficiently released from mitochondria following MOMP In a temporal manner, we find that following MOMP, BAX/BAK-mediated mitochondrial outer membrane pores gradually widen. This allows extrusion of the mitochondrial inner membrane into the cytosol whereupon it permeablises allowing mtDNA release. Our data demonstrate that mitochondrial inner membrane permeabilisation (MIMP) can occur during cell death following BAX/BAK-dependent MOMP Importantly, by enabling the cytosolic release of mtDNA, inner membrane permeabilisation underpins the immunogenic effects of caspase-independent cell death.


Subject(s)
Apoptosis , DNA, Mitochondrial/metabolism , Mitochondria/metabolism , Mitochondrial Membranes/metabolism , Animals , Cell Line, Tumor , DNA, Mitochondrial/genetics , Humans , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice , Mitochondria/genetics , Nucleotidyltransferases/genetics , Nucleotidyltransferases/metabolism , Permeability
5.
Mol Cell Oncol ; 2(2): e965638, 2015.
Article in English | MEDLINE | ID: mdl-27308415

ABSTRACT

Apoptosis and necroptosis are 2 major, yet distinct, forms of regulated cell death. Whereas apoptosis requires caspase protease function, necroptosis requires activation of the receptor interacting protein kinases 1 (RIPK1) and RIPK3. Following activation, RIPK3 phosphorylates mixed-lineage kinase domain-like (MLKL), leading to cell death. Apoptosis and necroptosis are deeply intertwined such that a given death stimulus can often engage either form of cell death. Recent studies published in Cell Death and Differentiation by the Han, Oberst, and Vaux laboratories provide exciting new insights into necroptosis and how it interconnects with apoptosis. As we will discuss, their findings address key questions including: How does a cell choose between apoptosis or necroptosis? How can RIPK3 also induce apoptosis? What is the nature of the RIPK1-3 signaling cascade leading to necroptosis? Finally, data from the Oberst and Han groups strongly argue that RIPK1 is not only involved in executing necroptosis, but also protects against this process in some settings.

SELECTION OF CITATIONS
SEARCH DETAIL
...