Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev E Stat Nonlin Soft Matter Phys ; 86(2 Pt 2): 026310, 2012 Aug.
Article in English | MEDLINE | ID: mdl-23005857

ABSTRACT

In a recent paper [Yiotis et al., Phys. Rev. E 85, 046308 (2012)] we developed a model for the drying of porous media in the presence of gravity. It incorporated effects of corner film flow, internal and external mass transfer, and the effect of gravity. Analytical results were derived when gravity opposes drying and hence leads to a stable percolation drying front. In this paper, we test the theory using laboratory experiments. A series of isothermal drying experiments in glass bead packings saturated with volatile hydrocarbons is conducted. The transparent glass cells containing the packing allow for the visual monitoring of the phase distribution patterns below the surface, including the formation of liquid films, as the gaseous phase invades the pore space, and for the control of the thickness of the diffusive mass boundary layer over the packing. The experimental results agree very well with theory, provided that the latter is generalized to account for the effects of corner roundness in the film region (which was neglected in the theoretical part). We demonstrate the existence of an early constant rate period (CRP), which lasts as long as the films saturate the surface of the packing, and of a subsequent falling rate period (FRP), which begins practically after the detachment of the film tips from the external surface. During the CRP, the process is controlled by diffusion within the stagnant gaseous phase in the upper part of the cells, yielding a Stefan tube problem solution. During the FRP, the process is controlled by diffusion within the packing, with a drying rate inversely proportional to the observed position of the film tips in the cell. Theoretical and experimental results compare favorably for a specific value of the roundness of the films, which is found to be constant and equal to 0.2 for various conditions, and verify the theoretical dependence on the capillary Ca(f), Bond Bo, and Sherwood Sh numbers.


Subject(s)
Gravitation , Porosity , Algorithms , Desiccation , Diffusion , Glass , Hydrocarbons/chemistry , Models, Statistical , Models, Theoretical , Physics/methods , Pressure , Surface Properties
2.
Phys Rev E Stat Nonlin Soft Matter Phys ; 85(4 Pt 2): 046308, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22680575

ABSTRACT

We develop a mathematical model for the drying of porous media in the presence of gravity. The model incorporates effects of corner flow through macroscopic liquid films that form in the cavities of pore walls, mass transfer by diffusion in the dry regions of the medium, external mass transfer over the surface, and the effect of gravity. We consider two different cases: when gravity opposes liquid flow in the corner films and leads to a stable percolation drying front, and when it acts in the opposite direction. In this part, we develop analytical results when the problem can be cast as an equivalent continuum and described as a one-dimensional (1D) problem. This is always the case when gravity acts against drying by opposing corner flow, or when it enhances drying by increasing corner film flow but it is sufficiently small. We obtain results for all relevant variables, including drying rates, extent of the macroscopic film region, and the demarkation of the two different regimes of constant rate period and falling rate period, respectively. The effects of dimensionless variables, such as the bond number, the capillary number, and the Sherwood number for external mass transfer are investigated. When gravity acts to enhance drying, a 1D solution is still possible if an appropriately defined Rayleigh number is above a critical threshold. We derive a linear stability analysis of a model problem under this condition that verifies front stability. Further analysis of this problem, when the Rayleigh number is below critical, requires a pore-network simulator which will be the focus of future work.

SELECTION OF CITATIONS
SEARCH DETAIL
...