Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Blood Adv ; 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38916861

ABSTRACT

Curative benefits of autologous and allogeneic transplantation of hematopoietic stem cells (HSCs) have been proven for various diseases. However, the low number of true HSCs that can be collected from patients and subsequently in vitro maintenance and expansion of true HSCs for genetic correction remain challenging. Addressing this issue, we here focused on optimizing culture conditions to improve the ex vivo expansion of true HSCs for gene therapy purposes. In particular, we explore the use of epigenetic regulators to enhance the effectiveness of HSC-based lentiviral (LV) gene therapy. The HDAC inhibitor Quisinostat and the bromodomain inhibitor CPI203 each promote ex vivo expansion of functional HSCs, as validated by xenotransplantation assays and single cell RNA-sequencing analysis. We confirmed the stealth effect of LV transduction on the loss of HSC numbers in commonly used culture protocols, while addition of Quisinostat or CPI203 improved expansion of HSCs in transduction protocols. Of note, we demonstrated that addition of Quisinostat improved LV transduction efficiency of HSCs and early progenitors. Our suggested culture conditions highlight the potential therapeutic effect of epigenetic regulators in hematopoietic stem cell biology and their clinical applications to advance HSC-based gene correction.

2.
Int J Mol Sci ; 23(21)2022 Oct 22.
Article in English | MEDLINE | ID: mdl-36361533

ABSTRACT

The ex vivo expansion and maintenance of long-term hematopoietic stem cells (LT-HSC) is crucial for stem cell-based gene therapy. A combination of stem cell factor (SCF), thrombopoietin (TPO), FLT3 ligand (FLT3) and interleukin 3 (IL3) cytokines has been commonly used in clinical settings for the expansion of CD34+ from different sources, prior to transplantation. To assess the effect of IL3 on repopulating capacity of cultured CD34+ cells, we employed the commonly used combination of STF, TPO and FILT3 with or without IL3. Expanded cells were transplanted into NSG mice, followed by secondary transplantation. Overall, this study shows that IL3 leads to lower human cell engraftment and repopulating capacity in NSG mice, suggesting a negative effect of IL3 on HSC self-renewal. We, therefore, recommend omitting IL3 from HSC-based gene therapy protocols.


Subject(s)
Hematopoietic Stem Cell Transplantation , Interleukin-3 , Animals , Humans , Mice , Antigens, CD34 , Cells, Cultured , Cytokines/pharmacology , Hematopoietic Stem Cell Transplantation/methods , Hematopoietic Stem Cells , Interleukin-3/pharmacology , Stem Cell Factor/pharmacology , Thrombopoietin/pharmacology
3.
Cells ; 8(2)2019 02 18.
Article in English | MEDLINE | ID: mdl-30781676

ABSTRACT

Expansion of hematopoietic stem cells (HSCs) for therapeutic purposes has been a "holy grail" in the field for many years. Ex vivo expansion of HSCs can help to overcome material shortage for transplantation purposes and genetic modification protocols. In this review, we summarize improved understanding in blood development, the effect of niche and conservative signaling pathways on HSCs in mice and humans, and also advances in ex vivo culturing protocols of human HSCs with cytokines or small molecule compounds. Different expansion protocols have been tested in clinical trials. However, an optimal condition for ex vivo expansion of human HSCs still has not been found yet. Translating and implementing new findings from basic research (for instance by using genetic modification of human HSCs) into clinical protocols is crucial to improve ex vivo expansion and eventually boost stem cell gene therapy.


Subject(s)
Hematopoietic Stem Cell Transplantation , Hematopoietic Stem Cells/cytology , Stem Cell Niche , Animals , Cell Lineage , Cell Self Renewal , Humans , Wnt Signaling Pathway
SELECTION OF CITATIONS
SEARCH DETAIL
...