Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 28(14)2023 Jul 18.
Article in English | MEDLINE | ID: mdl-37513359

ABSTRACT

Epinephrine (EP, also called adrenaline) is a compound belonging to the catecholamine neurotransmitter family. It can cause neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, Huntington's disease and amyotrophic lateral sclerosis. This work describes an amperometric sensor for the electroanalytical detection of EP by using an inkjet-printed graphene electrode (IPGE) that has been chemically modified by a thin layer of a laponite (La) clay mineral. The ion exchange properties and permeability of the chemically modified electrode (denoted La/IPGE) were evaluated using multi-sweep cyclic voltammetry, while its charge transfer resistance was determined by electrochemical impedance spectroscopy. The results showed that La/IPGE exhibited higher sensitivity to EP compared to the bare IPGE. The developed sensor was directly applied for the determination of EP in aqueous solution using differential pulse voltammetry. Under optimized conditions, a linear calibration graph was obtained in the concentration range between 0.8 µM and 10 µM. The anodic peak current of EP was directly proportional to its concentration, leading to detection limits of 0.34 µM and 0.26 µM with bare IPGE and La/IPGE, respectively. The sensor was successfully applied for the determination of EP in pharmaceutical preparations. Recovery rates and the effects of interfering species on the detection of EP were evaluated to highlight the selectivity of the elaborated sensor.


Subject(s)
Graphite , Graphite/chemistry , Carbon/chemistry , Clay , Electrochemical Techniques/methods , Epinephrine/chemistry , Electrodes , Pharmaceutical Preparations
2.
Sensors (Basel) ; 22(16)2022 Aug 18.
Article in English | MEDLINE | ID: mdl-36015934

ABSTRACT

In this work, an electrode modified with an amino-functionalized clay mineral was used for the electrochemical analysis and quantification of quercetin (QCT). The resulting amine laponite (LaNH2) was used as modifier for a glassy carbon electrode (GCE). The organic-inorganic hybrid material was structurally characterized using X-ray diffraction, Fourier transformed infrared spectroscopy (FTIR), scanning electron microscopy (SEM), thermogravimetric analysis (TGA) and CHN elemental analysis. The covalent grafting of the organosilane to the clay backbone was confirmed. The charge on the aminated laponite, both without and with the protonation of NH2 groups, was evaluated via cyclic voltammetry. On the protonated amine (LaNH3+)-modified GCE, the cyclic voltammograms for QCT showed two oxidation peaks and one reduction peak in the range of -0.2 V to 1.2 V in a phosphate buffer-ethanol mixture at pH 3. By using the differential pulse voltammetry (DPV), the modification showed an increase in the electrode performance and a strong pH dependence. The experimental conditions were optimized, with the results showing that the peak current intensity of the DPV increased linearly with the QCT concentration in the range from 2 × 10-7 M to 2 × 10-6 M, leading to a detection limit of 2.63 × 10-8 M (S/N 3). The sensor selectivity was also evaluated in the presence of interfering species. Finally, the proposed aminated organoclay-modified electrode was successfully applied for the detection of QCT in human urine. The accuracy of the results achieved with the sensor was evaluated by comparing the results obtained using UV-visible spectrometry.


Subject(s)
Electrochemical Techniques , Quercetin , Amines , Carbon/chemistry , Clay , Electrochemical Techniques/methods , Electrodes , Humans , Silicates
3.
Materials (Basel) ; 15(12)2022 Jun 16.
Article in English | MEDLINE | ID: mdl-35744321

ABSTRACT

An amperometric sensor was developed by depositing a film coating of hydroxyapatite (HA)/L-lysine (Lys) composite material on a glassy carbon electrode (GCE). It was applied for the detection of Nile blue A (NBA). Hydroxyapatite was obtained from snail shells and its structural properties before and after its combination with Lys were characterized using X-ray diffraction (XRD), Fourier-transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), and Brunauer-Emmett-Teller (BET) surface area analyses. The coupling of Lys to HA was attributed to favorable interaction between negatively charged -COO- groups of Lys and divalent ions Ca2+ of HA. Electrochemical investigations pointed out the improvement in sensitivity of the GCE/Lys/HA sensor towards the detection of NBA in solution. The dependence of the peak current and potential on the pH, scan rate, and NBA concentration was also investigated. Under optimal conditions, the GCE/Lys/HA sensor showed a good reproducibility, selectivity, and a NBA low detection limit of 5.07 × 10-8 mol L-1. The developed HA/Lys-modified electrode was successfully applied for the detection of NBA in various water samples.

SELECTION OF CITATIONS
SEARCH DETAIL
...