Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Biol Rep ; 51(1): 516, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38622329

ABSTRACT

BACKGROUND: Resveratrol has received much attention due to its beneficial effects including antioxidant activity. The purpose of this study was to investigate the therapeutic effects of resveratrol treatment on oxidative stress and insulin resistance in the skeletal muscle of high-fat diet (HFD)-fed animals. METHODS AND RESULTS: A total of 30 six-week-old C57BL/6J mice were randomly allocated to three groups (10 animals in each group): The control group in which mice were fed a normal chow diet (NCD); the HFD group in which mice were fed an HFD for 26 weeks; and the HFD-resveratrol group in which HFD was replaced by a resveratrol supplemented-HFD (400 mg/kg diet) after 10 weeks of HFD feeding. At the end of this period, gastrocnemius muscle samples were examined to determine insulin resistance and the oxidative status in the presence of HFD and resveratrol. Resveratrol supplementation in HFD-fed mice reduced body and adipose tissue weight, improved insulin sensitivity, and decreased oxidative stress as indicated by lower malonaldehyde (MDA) levels and higher total antioxidant capacity. The supplement also increased the expression and activity of antioxidative enzymes in gastrocnemius muscle and modulated Nrf2 and Keap1 expression levels. CONCLUSIONS: These results suggest that resveratrol is effective in improving the antioxidant defense system of the skeletal muscle in HFD-fed mice, indicating its therapeutic potential to combat diseases associated with insulin resistance and oxidative stress.


Subject(s)
Antioxidants , Insulin Resistance , Mice , Animals , Antioxidants/metabolism , Resveratrol/pharmacology , Resveratrol/metabolism , Insulin Resistance/physiology , Diet, High-Fat/adverse effects , NF-E2-Related Factor 2/metabolism , Kelch-Like ECH-Associated Protein 1/metabolism , Mice, Inbred C57BL , Muscle, Skeletal/metabolism , Signal Transduction , Insulin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...