Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
J Phys Chem A ; 128(22): 4474-4482, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38807530

ABSTRACT

We report a full-dimensional ab initio analytical potential energy surface (PES), which accurately describes the HCl + C2H5 multichannel reaction. The new PES is developed by iteratively adding selected configurations along HCl + C2H5 quasi-classical trajectories (QCTs), thereby improving our previous Cl(2P3/2) + C2H6 PES using the Robosurfer program package. QCT simulations for the H'Cl + C2H5 reaction reveal hydrogen-abstraction, chlorine-abstraction, and hydrogen-exchange channels leading to Cl + C2H5H', H' + C2H5Cl, and HCl + C2H4H', respectively. Hydrogen abstraction dominates in the collision energy (Ecoll) range of 1-80 kcal/mol and proceeds with indirect isotropic scattering at low Ecoll and forward-scattered direct stripping at high Ecoll. Chlorine abstraction opens around 40 kcal/mol collision energy and becomes competitive with hydrogen abstraction at Ecoll = 80 kcal/mol. A restricted opening of the cone of acceptance in the Cl-abstraction reaction is found to result in the preference for a backward-scattering direct-rebound mechanism at all energies studied. Initial attack-angle distributions show mainly side-on collision preference of C2H5 for both abstraction reactions, and in the case of the HCl reactant, H/Cl-side preference for the H/Cl abstraction. For hydrogen abstraction, the collision energy transfer into the product translational and internal energy is almost equally significant, whereas in the case of chlorine abstraction, most of the available energy goes into the internal degrees of freedom. Hydrogen exchange is a minor channel with nearly constant reactivity in the Ecoll range of 10-80 kcal/mol.

2.
Phys Chem Chem Phys ; 26(22): 15818-15830, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38639072

ABSTRACT

Controlling the outcome of chemical reactions by exciting specific vibrational and/or rotational modes of the reactants is one of the major goals of modern reaction dynamics studies. In the present Perspective, we focus on first-principles vibrational and rotational mode-specific dynamics computations on reactions of neutral and anionic systems beyond six atoms such as X + C2H6 [X = F, Cl, OH], HX + C2H5 [X = Br, I], OH- + CH3I, and F- + CH3CH2Cl. The dynamics simulations utilize high-level ab initio analytical potential energy surfaces and the quasi-classical trajectory method. Besides initial state specificity and the validity of the Polanyi rules, mode-specific vibrational-state assignment for polyatomic product species using normal-mode analysis and Gaussian binning is also discussed and compared with experiment.

3.
J Phys Chem A ; 127(35): 7364-7372, 2023 Sep 07.
Article in English | MEDLINE | ID: mdl-37620310

ABSTRACT

We investigate the effects of the initial vibrational excitations on the dynamics of the OH + C2H6 → H2O + C2H5 reaction using the quasi-classical trajectory method and a full-dimensional analytical ab initio potential energy surface. Excitation of the initial CH, CC, and OH stretching modes enhances, slightly inhibits, and does not affect the reactivity, respectively. Translational energy activates the early-barrier title reaction more efficiently than OH and CC stretching excitations, in accord with the Polanyi rules whereas CH stretching modes have similar or higher efficacy than translation, showing that these rules are not always valid in polyatomic processes. Scattering angle, initial attack angle, and product translational energy distributions show the dominance of direct stripping with increasing collision energy, side-on OH and isotropic C2H6 attack preferences, and substantial reactant-product translational energy transfer without any significant mode specificity. The reactant vibrational excitation energy of OH and C2H6 flows into the H2O and C2H5 product vibrations, respectively, whereas product rotations are not affected. The computed mode-specific H2O vibrational distributions show that initial OH excitation appears in the asymmetric stretching vibration of the H2O product and allow comparison with experiments.

4.
J Chem Phys ; 158(19)2023 May 21.
Article in English | MEDLINE | ID: mdl-37194716

ABSTRACT

We have developed a full-dimensional analytical ab initio potential energy surface (PES) for the Cl- + CH3I reaction using the Robosurfer program system. The energy points have been computed using a robust composite method defined as CCSD-F12b + BCCD(T) - BCCD with the aug-cc-pVTZ(-PP) basis set and have been fitted by the permutationally invariant polynomial approach. Quasi-classical trajectory simulations on the new PES reveal that two product channels are open in the collision energy (Ecoll) range of 1-80 kcal/mol, i.e., SN2 leading to I- + CH3Cl and iodine abstraction (above ∼45 kcal/mol) resulting in ICl- + CH3. Scattering angle, initial attack angle, product translational energy, and product internal energy distributions show that the SN2 reaction is indirect at low Ecoll and becomes direct-rebound-back-side (CH3-side) attack-type, as Ecoll increases. Iodine abstraction mainly proceeds with direct stripping mechanism with side-on/back-side attack preference. Comparison with crossed-beam experiments and previous direct dynamics simulations shows quantitative or qualitative agreement and also highlights possible theoretical and/or experimental issues motivating further research.

5.
Phys Chem Chem Phys ; 24(40): 24784-24792, 2022 Oct 19.
Article in English | MEDLINE | ID: mdl-36200891

ABSTRACT

We report a full-dimensional spin-orbit-corrected analytical potential energy surface (PES) for the HBr + C2H5 → Br + C2H6 reaction and a quasi-classical dynamics study on the new PES. For the PES development, the ROBOSURFER program package is applied and the ManyHF-based UCCSD(T)-F12a/cc-pVDZ-F12(-PP) energy points are fitted using the permutationally-invariant monomial symmetrization approach. The spin-orbit coupling at the level of MRCI-F12+Q(5,3)/cc-pVDZ-F12(-PP) is taken into account, since it has a significant effect in the exit channel of this reaction. Our simulations show that in the 1-40 kcal mol-1 collision energy (Ecoll) range the b = 0 reaction probability increases first and then decreases with increasing Ecoll, reaching around 15% at the medium Ecoll. No significant Ecoll dependence is observed in the range of 5-20 kcal mol-1. The reaction probabilities decrease monotonically with increasing b and the maximum b where reactivity vanishes is smaller and smaller as Ecoll increases. Unlike in the case of HBr + CH3, the integral cross-section decays sharply as Ecoll changes from 5 to 1 kcal mol-1. Scattering angle distributions usually show forward scattering preference, indicating the dominance of the direct stripping mechanism. The reaction clearly favors H-side attack over side-on HBr and the least-preferred Br-side approach, and favors side-on CH3CH2 attack over the CH2-side and the least-preferred CH3-side approach. The initial translational energy turns out to convert mostly into product recoil, whereas the reaction energy excites the C2H6 vibration. The vibrational and rotational distributions of the C2H6 product slightly blue-shift as Ecoll increases, and very few reactive trajectories violate zero-point energy.

6.
J Chem Phys ; 157(7): 074307, 2022 Aug 21.
Article in English | MEDLINE | ID: mdl-35987568

ABSTRACT

We develop a full-dimensional analytical potential energy surface (PES) for the OH + C2H6 reaction using the Robosurfer program system, which automatically (1) selects geometries from quasi-classical trajectories, (2) performs ab initio computations using a coupled-cluster singles, doubles, and perturbative triples-F12/triple-zeta-quality composite method, (3) fits the energies utilizing the permutationally invariant monomial symmetrization approach, and (4) iteratively improves the PES via steps (1)-(3). Quasi-classical trajectory simulations on the new PES reveal that hydrogen abstraction leading to H2O + C2H5 dominates in the collision energy range of 10-50 kcal/mol. The abstraction cross sections increase and the dominant mechanism shifts from rebound (small impact parameters and backward scattering) to stripping (larger impact parameters and forward scattering) with increasing collision energy as opacity functions and scattering angle distributions indicate. The abstraction reaction clearly favors side-on OH attack over O-side and the least-preferred H-side approach, whereas C2H6 behaves like a spherical object with only slight C-C-perpendicular side-on preference. The collision energy efficiently flows into the relative translation of the products, whereas product internal energy distributions show only little collision energy dependence. H2O/C2H5 vibrational distributions slightly/significantly violate zero-point energy and are nearly independent of collision energy, whereas the rotational distributions clearly blue-shift as the collision energy increases.

7.
Phys Chem Chem Phys ; 24(14): 8166-8181, 2022 Apr 06.
Article in English | MEDLINE | ID: mdl-35343535

ABSTRACT

We investigate the mode-specific dynamics of the ground-state, C-Cl stretching (v10), CH2 wagging (v7), sym-CH2 stretching (v1), and sym-CH3 stretching (v3) excited F- + CH3CH2Cl(vk = 0, 1) [k = 10, 7, 1, 3] → Cl- + CH3CH2F (SN2), HF + CH3CHCl-, FH⋯Cl- + C2H4, and Cl- + HF + C2H4 (E2) reactions using a full-dimensional high-level analytical global potential energy surface and the quasi-classical trajectory method. Excitation of the C-Cl stretching, CH2 stretching, and CH2/CH3 stretching modes enhances the SN2, proton abstraction, and FH⋯Cl- and E2 channels, respectively. Anti-E2 dominates over syn-E2 (kinetic anti-E2 preference) and the thermodynamically-favored SN2 (wider reactive anti-E2 attack angle range). The direct (a) SN2, (b) proton abstraction, (c) FH⋯Cl- + C2H4, (d) syn-E2, and (e) anti-E2 channels proceed with (a) back-side/backward, (b) isotropic/forward, (c) side-on/forward, (d) front-side/forward, and (e) back-side/forward attack/scattering, respectively. The HF products are vibrationally cold, especially for proton abstraction, and their rotational excitation increases for proton abstraction, anti-E2, and syn-E2, in order. Product internal-energy and mode-specific vibrational distributions show that CH3CH2F is internally hot with significant C-F stretching and CH2 wagging excitations, whereas C2H4 is colder. One-dimensional Gaussian binning technique is proved to solve the normal mode analysis failure caused by methyl internal rotation.

8.
J Chem Phys ; 155(12): 124301, 2021 Sep 28.
Article in English | MEDLINE | ID: mdl-34598562

ABSTRACT

Dynamics and mechanisms of the F- + CH3Br(v = 0) → Br- + CH3F (SN2 via Walden inversion, front-side attack, and double inversion), F- + inverted-CH3Br (induced inversion), HF + CH2Br- (proton abstraction), and FH⋯Br- + 1CH2 reactions are investigated using a high-level global ab initio potential energy surface, the quasiclassical trajectory method, as well as non-standard configuration- and mode-specific analysis techniques. A vector-projection method is used to identify inversion and retention trajectories; then, a transition-state-attack-angle-based approach unambiguously separates the front-side attack and the double-inversion retention pathways. The Walden-inversion SN2 channel becomes direct rebound dominated with increasing collision energy as indicated by backward scattering, initial back-side attack preference, and the redshifting of product internal energy peaks in accord with CF stretching populations. In the minor retention and induced-inversion pathways, almost the entire available energy transfers into product rotation-vibration, and retention mainly proceeds with indirect, slow double inversion following induced inversion with about 50% probability. Proton abstraction is dominated by direct stripping (evidenced by forward scattering) with CH3-side initial attack preference, providing mainly vibrationally ground state products with significant zero-point energy violation.

9.
Nat Chem ; 13(10): 977-981, 2021 10.
Article in English | MEDLINE | ID: mdl-34373599

ABSTRACT

Chemical reaction dynamics are studied to monitor and understand the concerted motion of several atoms while they rearrange from reactants to products. When the number of atoms involved increases, the number of pathways, transition states and product channels also increases and rapidly presents a challenge to experiment and theory. Here we disentangle the dynamics of the competition between bimolecular nucleophilic substitution (SN2) and base-induced elimination (E2) in the polyatomic reaction F- + CH3CH2Cl. We find quantitative agreement for the energy- and angle-differential reactive scattering cross-sections between ion-imaging experiments and quasi-classical trajectory simulations on a 21-dimensional potential energy hypersurface. The anti-E2 pathway is most important, but the SN2 pathway becomes more relevant as the collision energy is increased. In both cases the reaction is dominated by direct dynamics. Our study presents atomic-level dynamics of a major benchmark reaction in physical organic chemistry, thereby pushing the number of atoms for detailed reaction dynamics studies to a size that allows applications in many areas of complex chemical networks and environments.

10.
J Phys Chem A ; 125(12): 2385-2393, 2021 Apr 01.
Article in English | MEDLINE | ID: mdl-33631071

ABSTRACT

Moving beyond the six-atomic benchmark systems, we discuss the new age and future of first-principles reaction dynamics, which investigates complex, multichannel chemical reactions. We describe the methodology starting from the benchmark ab initio characterization of the stationary points, followed by full-dimensional potential energy surface (PES) developments and reaction dynamics computations. We highlight our composite ab initio approach providing benchmark stationary-point properties with subchemical accuracy, the Robosurfer program system enabling automatic PES development, and applications for the Cl + C2H6, F + C2H6, and OH- + CH3I post-six-atom reactions focusing on ab initio issues and their solutions as well as showing the excellent agreement between theory and experiment.

11.
J Phys Chem Lett ; 11(12): 4762-4767, 2020 Jun 18.
Article in English | MEDLINE | ID: mdl-32441943

ABSTRACT

Since the pioneering reaction dynamics studies of H + H2 in the 1970s, theory increased the system size by one atom in every decade arriving to six-atom reactions in the early 2010s. Here, we take a significant step forward by reporting accurate dynamics simulations for the nine-atom Cl + ethane (C2H6) reaction using a new high-quality spin-orbit-ground-state ab initio potential energy surface. Quasi-classical trajectory simulations on this surface cool the rotational distribution of the HCl product molecules, thereby providing unprecedented agreement with experiment after several previous failed attempts of theory. Unlike Cl + CH4, the Cl + C2H6 reaction is exothermic with an adiabatically submerged transition state, allowing testing of the validity of the Polanyi rules for a negative-barrier reaction.

12.
Phys Chem Chem Phys ; 22(8): 4298-4312, 2020 Feb 28.
Article in English | MEDLINE | ID: mdl-31840714

ABSTRACT

We describe a composite ab initio approach to determine the best technically feasible relative energies of stationary points considering additive contributions of the CCSD(T)/complete-basis-set limit, core and post-CCSD(T) correlation, scalar relativistic and spin-orbit effects, and zero-point energy corrections. The importance and magnitude of the different energy terms are discussed using examples of atom/ion + molecule reactions, such as X + CH4/C2H6 and X- + CH3Y/CH3CH2Cl [X, Y = F, Cl, Br, I, OH, etc.]. We test the performance of various ab initio levels and recommend the modern explicitly-correlated CCSD(T)-F12 methods for potential energy surface (PES) developments. We show that the choice of the level of electronic structure theory may significantly affect the reaction dynamics and the CCSD(T)-F12/double-zeta PESs provide nearly converged cross sections. Trajectory orthogonal projection and an Eckart-transformation-based stationary-point assignment technique are proposed to provide dynamical characterization of the stationary points, thereby revealing front-side complex formation in SN2 reactions and transition probabilities between different stationary-point regions.

13.
J Phys Chem A ; 121(14): 2847-2854, 2017 Apr 13.
Article in English | MEDLINE | ID: mdl-28338332

ABSTRACT

We compute benchmark structures, frequencies, and relative energies for the stationary points of the potential energy surface of the F- + CH3CH2Cl reaction using explicitly correlated ab initio levels of theory. CCSD(T)-F12b geometries and harmonic vibrational frequencies are obtained with the aug-cc-pVTZ and aug-cc-pVDZ basis sets, respectively. The benchmark relative energies are determined using a high-level composite method based on CCSD(T)-F12b/aug-cc-pVQZ frozen-core energies, CCSD(T)-F12b/cc-pCVTZ-F12 core electron correlation effects, and CCSD(T)-F12b/aug-cc-pVDZ zero-point energy corrections. The SN2 channel leading to Cl- + CH3CH2F (-33.2) can proceed via back-side (-11.5), front-side (29.1), and double-inversion (18.0) transition states, whereas the bimolecular elimination (E2) products, Cl- + HF + C2H4 (-19.3), can be formed via anti (-15.0) and syn (-7.3) saddle points, whose best adiabatic energies relative to F- + CH3CH2Cl are shown in parentheses in kcal/mol. Besides the SN2 and E2 channels, the 0 K reaction enthalpies of the HF + H3C-CHCl- (29.4), H- + H3C-CHClF (46.2), H- + FH2C-CH2Cl (51.1), and FCl- + CH3CH2 (49.7) product channels are determined. Utilizing the new benchmark data, the performance of the DF-MP2, MP2, MP2-F12, CCSD(T), and CCSD(T)-F12b methods with aug-cc-pVDZ and aug-cc-pVTZ basis sets is tested.

SELECTION OF CITATIONS
SEARCH DETAIL
...