Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Fungi (Basel) ; 8(12)2022 Dec 07.
Article in English | MEDLINE | ID: mdl-36547615

ABSTRACT

The removal of microalgae represents a problematic part of the water decontamination process, in which most techniques are expensive and non-ecological. In the paper, we focus on the synergistic relationship between microscopic filamentous fungi and algal culture. In the process of decontamination of a model sample containing ammonium ions, efficient biocoagulation, resp. co-pelletization of dried algae Chlorella sp. and Aspergillus niger sensu stricto are shown. The microscopic filamentous fungus species A. niger was added to a culture of an algal suspension of Chlorella sp., where the adhesion of the algal cells to the fungi subsequently occurred due to the electrostatic effect of the interaction, while the flocculation activity was approximately 70 to 80%. The algal cells adhered to the surface of the A. niger pellets, making them easily removable from the solution. The ability of filamentous fungi to capture organisms represents a great potential for the biological isolation of microalgae (biocoagulation) from production solutions because microalgae are considered to be a promising renewable source of oil and fermentables for bioenergy. This form of algae removal, or its harvesting, also represents a great low-cost method for collecting algae not only as a way of removing unnecessary material but also for the purpose of producing biofuels. Algae are a robust bioabsorbent for absorbing lipids from the environment, which after treatment can be used as a component of biodiesel. Chemical analyses also presented potential ecological innovation in the area of biofuel production. Energy-efficient and eco-friendly harvesting techniques are crucial to improving the economic viability of algal biofuel production.

2.
Front Microbiol ; 12: 792987, 2021.
Article in English | MEDLINE | ID: mdl-34950123

ABSTRACT

Despite the negative impact on the environment, incineration is one of the most commonly used methods for dealing with waste. Besides emissions, the production of ash, which usually shows several negative properties, such as a higher content of hazardous elements or strongly alkaline pH, is problematic from an environmental viewpoint as well. The subject of our paper was the assessment of biosorption of Ni from ash material by a microbial consortium of Chlorella sp. and Aspergillus niger. The solid substrate represented a fraction of particles of size <0.63 mm with a Ni content of 417 mg kg-1. We used a biomass consisting of two different organisms as the sorbent: a non-living algae culture of Chlorella sp. (an autotrophic organism) and the microscopic filamentous fungus A. niger (a heterotrophic organism) in the form of pellets. The experiments were conducted under static conditions as well as with the use of shaker (170 rpm) with different modifications: solid substrate, Chlorella sp. and pellets of A. niger; solid substrate and pellets of A. niger. The humidity-temperature conditions were also changed. Sorption took place under dry and also wet conditions (with distilled water in a volume of 30-50 ml), partially under laboratory conditions at a temperature of 25°C as well as in the exterior. The determination of the Ni content was done using inductively coupled plasma optical emission spectrometry (ICP-OES). The removal of Ni ranged from 13.61% efficiency (Chlorella sp., A. niger with the addition of 30 ml of distilled water, outdoors under static conditions after 48 h of the experiment) to 46.28% (Chlorella sp., A. niger with the addition of 30 ml of distilled water, on a shaker under laboratory conditions after 48 h of the experiment). For the purpose of analyzing the representation of functional groups in the microbial biomass and studying their interaction with the ash material, we used Fourier-transform infrared (FTIR) spectroscopy. We observed that the amount of Ni adsorbed positively correlates with absorbance in the spectral bands where we detect the vibrations of several organic functional groups. These groups include hydroxyl, aliphatic, carbonyl, carboxyl and amide structural units. The observed correlations indicate that, aside from polar and negatively charged groups, aliphatic or aromatic structures may also be involved in sorption processes due to electrostatic attraction. The correlation between absorbance and the Ni content reached a maximum in amide II band (r = 0.9; P < 0.001), where vibrations of the C=O, C-N, and N-H groups are detected. The presented results suggest that the simultaneous use of both microorganisms in biosorption represents an effective method for reducing Ni content in a solid substrate, which may be useful as a partial process for waste disposal.

3.
Sci Total Environ ; 539: 420-426, 2016 Jan 01.
Article in English | MEDLINE | ID: mdl-26376114

ABSTRACT

Herein we report the analysis of 27 selected psychoactive compounds found in the wastewater of the largest suburb in the eastern part of Central Europe Bratislava­Petrzalka, Slovakia. Thirteen of them (MDMA, methamphetamine, amphetamine, THC-COOH, benzoylecgonine, codeine, tramadol, venlafaxine, oxazepam, citalopram, methadone, EDDP, cocaine) were found in concentrations above 30 ng/L. These compoundswere selected for further monitoring. The possibility of complete degradation of these 13 substances by zerovalent iron and iron(VI) was studied in thewastewater from the Petrzalka treatment plant. During the week the concentration of themajority of the studied compounds inwastewaterwas stable. Concentrations of MDMA, cocaine, tramadol, and oxazepam reached significantly higher levels during the weekend.Only about 10% removal efficiency for tramadol, venlafaxine, oxazepam, MDMA, citalopram, methadone, and EDDP was observed at the treatment plant. In contrast, methamphetamine, amphetamine, and codeine were removed with 68%, 83%, and 53% efficiency, respectively. The degradation of synthetic drugs (methamphetamine, cocaine, MDMA) in wastewater is limited, while cannabis (of natural biological origin) is degradedwith efficiency greater than 90%. After utilization of the Fenton reaction, its modification, and use of ferrate(VI), a high efficiency of eliminating all of these substances to values below the limit of detection was achieved.


Subject(s)
Illicit Drugs/analysis , Iron/chemistry , Waste Disposal, Fluid/methods , Water Pollutants, Chemical/analysis , Water Purification/methods , Environmental Monitoring , Illicit Drugs/chemistry , Slovakia , Wastewater/chemistry , Water Pollutants, Chemical/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...