Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biomater Sci ; 12(5): 1249-1262, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38247338

ABSTRACT

Ferritins are globular proteins with an internal cavity that enables the encapsulation of a plethora of low-mass compounds. Unfortunately, the overall negative surface charge of ferritin's internal cavity hampers efficient loading of negatively charged molecules. Therefore, we produced a genetically engineered human H-chain ferritin containing a cationic RKRK domain, reversing the natural net charge of the cavity to positive, thus allowing for efficient encapsulation of negatively charged siRNA. Due to the reversed, positive charge mediated by RKRK domains, the recombinant ferritin produced in E. coli inherently carries a load of bacterial RNA inside its cavity, turning the protein into an effective sponge possessing high affinity for DNA/RNA-binding substances that can be loaded with markedly higher efficiency compared to the wildtype protein. Using doxorubicin as payload, we show that due to its loading through the RNA sponge, doxorubicin is released in a sustained manner, with a cytotoxicity profile similar to the free drug. In summary, this is the first report demonstrating a ferritin/nucleic acid hybrid delivery vehicle with a broad spectrum of properties exploitable in various fields of biomedical applications.


Subject(s)
Apoferritins , RNA , Humans , Apoferritins/genetics , Escherichia coli/genetics , Escherichia coli/metabolism , Ferritins/genetics , Ferritins/chemistry , Doxorubicin/pharmacology , Doxorubicin/chemistry
2.
Analyst ; 148(9): 2058-2063, 2023 May 02.
Article in English | MEDLINE | ID: mdl-36987850

ABSTRACT

Single-benzene fluorophores are bright and the smallest fluorochromes known so far. In single-benzene fluorophores, the fluorescence is mediated by the push/pull effect of substituting groups. Despite a plethora of advantageous properties, this group of molecules has not been extensively studied for design of high-performance fluorescent sensors of catalytic or enzymatic activities. Thus, herein, new fluorescent probes based on the Tsuji-Trost reaction were developed for the selective detection of palladium and other transition metals (platinum and gold) in an aqueous/organic mixed solvent with the sensitivity down to 2.5 nM (for palladium). The relative flexibility in the synthesis of these probes allows for facile color tuning of the emitted fluorescence. In this study, we have successfully utilized a yellow emission variant for sensitive detection of palladium under cell-free conditions and in living cells, validating its possible applicability for high-throughput optical sensing of catalysts for bioorthogonal chemistry under physiological conditions.


Subject(s)
Palladium , Transition Elements , Benzene , Fluorescent Dyes/chemistry , Palladium/chemistry , Solvents , Cell Survival
3.
Int J Mol Sci ; 20(14)2019 Jul 10.
Article in English | MEDLINE | ID: mdl-31295928

ABSTRACT

The metabolism of vandetanib, a tyrosine kinase inhibitor used for treatment of symptomatic/progressive medullary thyroid cancer, was studied using human hepatic microsomes, recombinant cytochromes P450 (CYPs) and flavin-containing monooxygenases (FMOs). The role of CYPs and FMOs in the microsomal metabolism of vandetanib to N-desmethylvandetanib and vandetanib-N-oxide was investigated by examining the effects of CYP/FMO inhibitors and by correlating CYP-/FMO-catalytic activities in each microsomal sample with the amounts of N-desmethylvandetanib/vandetanib-N-oxide formed by these samples. CYP3A4/FMO-activities significantly correlated with the formation of N-desmethylvandetanib/ vandetanib-N-oxide. Based on these studies, most of the vandetanib metabolism was attributed to N-desmethylvandetanib/vandetanib-N-oxide to CYP3A4/FMO3. Recombinant CYP3A4 was most efficient to form N-desmethylvandetanib, while FMO1/FMO3 generated N-oxide. Cytochrome b5 stimulated the CYP3A4-catalyzed formation of N-desmethylvandetanib, which is of great importance because CYP3A4 is not only most efficient in generating N-desmethylvandetanib, but also most significant due to its high expression in human liver. Molecular modeling indicated that binding of more than one molecule of vandetanib into the CYP3A4-active center can be responsible for the high efficiency of CYP3A4 N-demethylating vandetanib. Indeed, the CYP3A4-mediated reaction exhibits kinetics of positive cooperativity and this corresponded to the in silico model, where two vandetanib molecules were found in CYP3A4-active center.


Subject(s)
Antineoplastic Agents/pharmacology , Cytochrome P-450 CYP3A/metabolism , Enzymes/metabolism , Oxidation-Reduction , Piperidines/pharmacology , Protein Kinase Inhibitors/pharmacology , Quinazolines/pharmacology , Animals , Antineoplastic Agents/chemistry , Cytochrome P-450 CYP3A/chemistry , Dose-Response Relationship, Drug , Enzymes/chemistry , Humans , Mice , Microsomes, Liver/metabolism , Models, Molecular , Molecular Conformation , Molecular Structure , Piperidines/chemistry , Protein Kinase Inhibitors/chemistry , Quinazolines/chemistry , Rabbits , Rats , Recombinant Proteins
SELECTION OF CITATIONS
SEARCH DETAIL
...