Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 12(19)2019 Sep 27.
Article in English | MEDLINE | ID: mdl-31569634

ABSTRACT

Wavelength- or polarization-selective uncooled infrared (IR) sensors have various applications, such as in fire detection, gas analysis, hazardous material recognition, biological analysis, and polarimetric imaging. The unwanted modes originating due to the absorption by the materials used in these sensors, other than plasmonic metamaterial absorbers (PMAs), cause serious issues by degenerating the wavelength or polarization selectivity. In this study, we demonstrate a method for eliminating these unwanted modes in wavelength- or polarization-selective uncooled IR sensors with various PMAs, using a subtraction operation and a reference pixel. The aforementioned sensors and the reference pixels were fabricated using a complementary metal oxide semiconductor and micromachining techniques. We fabricated the reference pixel with the same structure as the PMA sensors, except a flat mirror was formed on the absorber surface instead of PMAs. The spectral responsivity measurements demonstrated that single-mode detection can be achieved through the subtraction operation with the reference pixel. The method demonstrated in this study can be applied to any type of uncooled IR sensors to create high-performance wavelength- or polarization-selective absorbers capable of multispectral or polarimetric detection.

2.
Sensors (Basel) ; 15(6): 13660-9, 2015 Jun 10.
Article in English | MEDLINE | ID: mdl-26067198

ABSTRACT

Wavelength-selective uncooled infrared (IR) sensors are highly promising for a wide range of applications, such as fire detection, gas analysis and biomedical analysis. We have recently developed wavelength-selective uncooled IR sensors using square lattice two-dimensional plasmonic absorbers (2-D PLAs). The PLAs consist of a periodic 2-D lattice of Au-based dimples, which allow photons to be manipulated using surface plasmon modes. In the present study, a detailed investigation into control of the detection wavelength was conducted by varying the PLA lattice structure. A comparison was made between wavelength-selective uncooled IR sensors with triangular and square PLA lattices that were fabricated using complementary metal oxide semiconductor and micromachining techniques. Selective enhancement of the responsivity could be achieved, and the detection wavelength for the triangular lattice was shorter than that for the square lattice. The results indicate that the detection wavelength is determined by the reciprocal-lattice vector for the PLAs. The ability to control the detection wavelength in this manner enables the application of such PLAs to many types of thermal IR sensors. The results obtained here represent an important step towards multi-color imaging in the IR region.

SELECTION OF CITATIONS
SEARCH DETAIL
...