Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Nutr ; 9: 885412, 2022.
Article in English | MEDLINE | ID: mdl-35911122

ABSTRACT

Crocetin glycosides such as crocin are noted as functional food materials since the preventive effects of crocin have been reported against chronic disease and cancer. However, it is unclear how these apocarotenoids are structurally changed through cooking for our intake. We examined such changes in crocetin glycosides (crocin, tricrocin, and crocin-3) contained in saffron (stigmas of Crocus sativus) through cooking models. These glycosides were almost kept stable in boiling for 20 min (a boiled cooking model), while hydrolysis of the ester linkage between glucose and the crocetin aglycone occurred in a grilled cooking model (180°C, 5 min), along with a 13-cis isomerization reaction in a part of crocetin subsequently generated. We further here revealed that the yellow petals of freesia (Freesia x hybrida) with yellow flowers accumulate two unique crocetin glycosides, which were identified to be crocetin (mono)neapolitanosyl ester and crocetin dineapolitanosyl ester. A similar result as above was obtained on their changes through the cooking models. Utility applications of the freesia flowers as edible flowers are also suggested in this study. Additionally, we evaluated singlet oxygen (1O2)-quenching activities of the crocetin glycosides contained in saffron and freesia, and crocetin and 13-cis crocetin contained in the grilled saffron, indicating that they possessed moderate 1O2-quenching activities (IC50 24-64 µM).

2.
Microb Cell Fact ; 20(1): 194, 2021 Oct 09.
Article in English | MEDLINE | ID: mdl-34627253

ABSTRACT

BACKGROUND: Members of the genus Planococcus have been revealed to utilize and degrade solvents such as aromatic hydrocarbons and alkanes, and likely to acquire tolerance to solvents. A yellow marine bacterium Planococcus maritimus strain iso-3 was isolated from an intertidal sediment that looked industrially polluted, from the Clyde estuary in the UK. This bacterium was found to produce a yellow acyclic carotenoid with a basic carbon 30 (C30) structure, which was determined to be methyl 5-glucosyl-5,6-dihydro-4,4'-diapolycopenoate. In the present study, we tried to isolate and identify genes involved in carotenoid biosynthesis from this marine bacterium, and to produce novel or rare C30-carotenoids with anti-oxidative activity in Escherichia coli by combinations of the isolated genes. RESULTS: A carotenoid biosynthesis gene cluster was found out through sequence analysis of the P. maritimus genomic DNA. This cluster consisted of seven carotenoid biosynthesis candidate genes (orf1-7). Then, we isolated the individual genes and analyzed the functions of these genes by expressing them in E. coli. The results indicated that orf2 and orf1 encoded 4,4'-diapophytoene synthase (CrtM) and 4,4'-diapophytoene desaturase (CrtNa), respectively. Furthermore, orf4 and orf5 were revealed to code for hydroxydiaponeurosporene desaturase (CrtNb) and glucosyltransferase (GT), respectively. By utilizing these carotenoid biosynthesis genes, we produced five intermediate C30-carotenoids. Their structural determination showed that two of them were novel compounds, 5-hydroxy-5,6-dihydro-4,4'-diaponeurosporene and 5-glucosyl-5,6-dihydro-4,4'-diapolycopene, and that one rare carotenoid 5-hydroxy-5,6-dihydro-4,4'-diapolycopene is included there. Moderate singlet oxygen-quenching activities were observed in the five C30-carotenoids including the two novel and one rare compounds. CONCLUSIONS: The carotenoid biosynthesis genes from P. maritimus strain iso-3, were isolated and functionally identified. Furthermore, we were able to produce two novel and one rare C30-carotenoids in E. coli, followed by positive evaluations of their singlet oxygen-quenching activities.


Subject(s)
Antioxidants/isolation & purification , Carotenoids/isolation & purification , Planococcaceae , Escherichia coli/metabolism , Genes, Bacterial , Planococcaceae/genetics , Planococcaceae/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...