Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 11(1): 11745, 2021 06 03.
Article in English | MEDLINE | ID: mdl-34083651

ABSTRACT

Energy constraints are a fundamental limitation of the brain, which is physically embedded in a restricted space. The collective dynamics of neurons through connections enable the brain to achieve rich functionality, but building connections and maintaining activity come at a high cost. The effects of reducing these costs can be found in the characteristic structures of the brain network. Nevertheless, the mechanism by which energy constraints affect the organization and formation of the neuronal network in the brain is unclear. Here, it is shown that a simple model based on cost minimization can reproduce structures characteristic of the brain network. With reference to the behavior of neurons in real brains, the cost function was introduced in an activity-dependent form correlating the activity cost and the wiring cost as a simple ratio. Cost reduction of this ratio resulted in strengthening connections, especially at highly activated nodes, and induced the formation of large clusters. Regarding these network features, statistical similarity was confirmed by comparison to connectome datasets from various real brains. The findings indicate that these networks share an efficient structure maintained with low costs, both for activity and for wiring. These results imply the crucial role of energy constraints in regulating the network activity and structure of the brain.

2.
Oncol Lett ; 21(5): 406, 2021 May.
Article in English | MEDLINE | ID: mdl-33841567

ABSTRACT

An in vitro assay system using patient-derived tumor models represents a promising preclinical cancer model that replicates the disease better than traditional cell culture models. Patient-derived tumor organoid (PDO) and patient-derived tumor xenograft (PDX) models have been previously established from different types of human tumors to recapitulate accurately and efficiently their tissue architecture and function. However, these models have low throughput and are challenging to construct. Thus, the present study aimed to establish a simple in vitro high-throughput assay system using PDO and PDX models. Furthermore, the current study aimed to evaluate different classes of anticancer drugs, including chemotherapeutic, molecular targeted and antibody drugs, using PDO and PDX models. First, an in vitro high-throughput assay system was constructed using PDO and PDX established from solid and hematopoietic tumors cultured in 384-well plates to evaluate anticancer agents. In addition, an in vitro evaluation system of the immune response was developed using PDO and PDX. Novel cancer immunotherapeutic agents with marked efficacy have been used against various types of tumor. Thus, there is an urgent need for in vitro functional potency assays that can simulate the complex interaction of immune cells with tumor cells and can rapidly test the efficacy of different immunotherapies or antibody drugs. An evaluation system for the antibody-dependent cellular cytotoxic activity of anti-epidermal growth factor receptor antibody and the cytotoxic activity of activated lymphocytes, such as cytotoxic T lymphocytes and natural killer cells, was constructed. Moreover, immune response assay systems with bispecific T-cell engagers were developed using effector cells. The present results demonstrated that in vitro assay systems using PDO and PDX may be suitable for evaluating anticancer agents and immunotherapy potency with high reproducibility and simplicity.

3.
Cells ; 8(5)2019 05 20.
Article in English | MEDLINE | ID: mdl-31137590

ABSTRACT

Patient-derived tumor organoids (PDOs) represent a promising preclinical cancer model that better replicates disease, compared with traditional cell culture models. We have established PDOs from various human tumors to accurately and efficiently recapitulate the tissue architecture and function. Molecular targeted therapies with remarkable efficacy are currently in use against various tumors. Thus, there is a need for in vitro functional-potency assays that can be used to test the efficacy of molecular targeted drugs and model complex interactions between immune cells and tumor cells to evaluate the potential for cancer immunotherapy. This study represents an in vitro evaluation of different classes of molecular targeted drugs, including small-molecule inhibitors, monoclonal antibodies, and an antibody-drug conjugate, using lung PDOs. We evaluated epidermal growth factor receptor and human epidermal growth factor receptor 2 (HER2) inhibitors using a suitable high-throughput assay system. Next, the antibody-dependent cellular cytotoxicity (ADCC) activity of an anti-HER2 monoclonal antibody was evaluated to visualize the interactions of immune cells with PDOs during ADCC responses. Moreover, an evaluation system was developed for the immune checkpoint inhibitors, nivolumab and pembrolizumab, using PDOs. Our results demonstrate that the in vitro assay systems using PDOs were suitable for evaluating molecular targeted drugs under conditions that better reflect pathological conditions.


Subject(s)
Antibodies, Monoclonal, Humanized/therapeutic use , Antineoplastic Agents/therapeutic use , Carcinoma, Adenosquamous/drug therapy , Carcinoma, Squamous Cell/drug therapy , Drug Evaluation/methods , Lung Neoplasms/drug therapy , Molecular Targeted Therapy , Organoids/drug effects , Antibodies, Monoclonal, Humanized/pharmacology , Antineoplastic Agents/pharmacology , Biopsy , Carcinoma, Adenosquamous/pathology , Carcinoma, Adenosquamous/surgery , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/surgery , Cell Survival/drug effects , Cells, Cultured , ErbB Receptors/antagonists & inhibitors , Humans , L-Lactate Dehydrogenase/analysis , Lung Neoplasms/pathology , Lung Neoplasms/surgery , Receptor, ErbB-2/antagonists & inhibitors
4.
Front Comput Neurosci ; 13: 86, 2019.
Article in English | MEDLINE | ID: mdl-31998106

ABSTRACT

Successive patterns of activation and deactivation in local areas of the brain indicate the mechanisms of information processing in the brain. It is possible that this process can be optimized by principles, such as the maximization of mutual information and the minimization of energy consumption. In the present paper, I showed evidence for this argument by demonstrating the correlation among mutual information, the energy of the activation, and the activation patterns. Modeling the information processing based on the functional connectome datasets of the human brain, I simulated information transfer in this network structure. Evaluating the statistical quantities of the different network states, I clarified the correlation between them. First, I showed that mutual information and network energy have a close relationship, and that the values are maximized and minimized around a same network state. This implies that there is an optimal network state in the brain that is organized according to the principles regarding mutual information and energy. On the other hand, the evaluation of the network structure revealed that the characteristic network structure known as the criticality also emerges around this state. These results imply that the characteristic features of the functional network are also affected strongly by these principles. To assess the functional aspects of this state, I investigated the output activation patterns in response to random input stimuli. Measuring the redundancy of the responses in terms of the number of overlapping activation patterns, the results indicate that there is a negative correlation between mutual information and the redundancy in the patterns, suggesting that there is a trade-off between communication efficiency and robustness due to redundancy, and the principles of mutual information and network energy are important to network formation and its function in the human brain.

5.
Front Comput Neurosci ; 12: 65, 2018.
Article in English | MEDLINE | ID: mdl-30131688

ABSTRACT

The information processing in the large scale network of the human brain is related to its cognitive functions. Due to requirements for adaptation to changing environments under biological constraints, these processes in the brain can be hypothesized to be optimized. The principles based on the information optimization are expected to play a central role in affecting the dynamics and topological structure of the brain network. Recent studies on the functional connectivity between brain regions, referred to as the functional connectome, reveal characteristics of their networks, such as self-organized criticality of brain dynamics and small-world topology. However, these important attributes are established separately, and their relations to the principle of the information optimization are unclear. Here, we show that the maximization principle of the mutual information entropy induces the optimal state, at which the small-world network topology and the criticality in the activation dynamics emerge. Our findings, based on the functional connectome analyses, show that according to the increasing mutual information entropy, the coactivation pattern converges to the state of self-organized criticality, and a phase transition of the network topology, which is responsible for the small-world topology, arises simultaneously at the same point. The coincidence of these phase transitions at the same critical point indicates that the criticality of the dynamics and the phase transition of the network topology are essentially rooted in the same phenomenon driven by the mutual information maximization. As a consequence, the two different attributes of the brain, self-organized criticality and small-world topology, can be understood within a unified perspective under the information-based principle. Thus, our study provides an insight into the mechanism underlying the information processing in the brain.

6.
PLoS One ; 12(5): e0177446, 2017.
Article in English | MEDLINE | ID: mdl-28545048

ABSTRACT

The analysis of the network structure of the functional connectivity data constructed from fMRI images provides basic information about functions and features of the brain activity. We focus on the two features which are considered as relevant to the brain activity, the criticality and the constraint regarding energy consumptions. Within a wide variety of complex systems, the critical state occurs associated with a phase transition between distinct phases, random one and order one. Although the hypothesis that human brain activity is also in a state of criticality is supported by some experimental results, it still remains controversial. One issue is that experimental distributions exhibit deviations from the power law predicted by the criticality. Based on the assumption that constraints on brain from the biological costs cause these deviations, we derive a distribution model. The evaluation using the information criteria indicates an advantage of this model in fitting to experimental data compared to other representative distribution models, the truncated power law and the power law. Our findings also suggest that the mechanism underlying this model is closely related to the cost effective behavior in human brain with maximizing the network efficiency for the given network cost.


Subject(s)
Brain/physiology , Models, Neurological , Brain/diagnostic imaging , Connectome , Humans , Magnetic Resonance Imaging , Nerve Net/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...