Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Microb Cell Fact ; 22(1): 168, 2023 Aug 29.
Article in English | MEDLINE | ID: mdl-37644492

ABSTRACT

BACKGROUND: Microbial production of aromatic chemicals is an attractive method for obtaining high-performance materials from biomass resources. A non-proteinogenic amino acid, 4-amino-3-hydroxybenzoic acid (4,3-AHBA), is expected to be a precursor of highly functional polybenzoxazole polymers; however, methods for its microbial production have not been reported. In this study, we attempted to produce 4,3-AHBA from glucose by introducing 3-hydroxylation of 4-aminobenzoic acid (4-ABA) into the metabolic pathway of an industrially relevant bacterium, Corynebacterium glutamicum. RESULTS: Six different 4-hydroxybenzoate 3-hydroxylases (PHBHs) were heterologously expressed in C. glutamicum strains, which were then screened for the production of 4,3-AHBA by culturing with glucose as a carbon source. The highest concentration of 4,3-AHBA was detected in the strain expressing PHBH from Caulobacter vibrioides (CvPHBH). A combination of site-directed mutagenesis in the active site and random mutagenesis via laccase-mediated colorimetric assay allowed us to obtain CvPHBH mutants that enhanced 4,3-AHBA productivity under deep-well plate culture conditions. The recombinant C. glutamicum strain expressing CvPHBHM106A/T294S and having an enhanced 4-ABA biosynthetic pathway produced 13.5 g/L (88 mM) 4,3-AHBA and 0.059 g/L (0.43 mM) precursor 4-ABA in fed-batch culture using a nutrient-rich medium. The culture of this strain in the chemically defined CGXII medium yielded 9.8 C-mol% of 4,3-AHBA from glucose, corresponding to 12.8% of the theoretical maximum yield (76.8 C-mol%) calculated using a genome-scale metabolic model of C. glutamicum. CONCLUSIONS: Identification of PHBH mutants that could efficiently catalyze the 3-hydroxylation of 4-ABA in C. glutamicum allowed us to construct an artificial biosynthetic pathway capable of producing 4,3-AHBA on a gram-scale using glucose as the carbon source. These findings will contribute to a better understanding of enzyme-catalyzed regioselective hydroxylation of aromatic chemicals and to the diversification of biomass-derived precursors for high-performance materials.


Subject(s)
Corynebacterium glutamicum , Corynebacterium glutamicum/genetics , Glucose , Mixed Function Oxygenases/genetics , Carbon
2.
J Biosci Bioeng ; 134(2): 89-94, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35644798

ABSTRACT

The present study investigated high-yield monoacylglycerol (MAG) synthesis by bacterial lipolytic enzymes in a solvent-free two-phase system. Esterification by monoacylglycerol lipase from Bacillus sp. H-257 (H257) required a high glycerol/fatty acid molar ratio for efficient MAG synthesis. Screening of H257 homologues revealed that carboxylesterase derived from Geobacillus thermodenitrificans, EstGtA2, exhibited a higher esterification rate than H257. Moreover, neutralizing the pH of the acidic reaction solution by adding potassium hydroxide (KOH) solution further increased the esterification rate. The esterification rate by EstGtA2 reached 75% under conditions of equivalent molar amounts of glycerol and fatty acid, and the MAG rate (MAG/total glyceride) was 97%. The neutralized pH of the reaction solution likely affected the thermal stability of EstGtA2 during the esterification reaction. Screening for thermal-tolerant variants revealed that the EstGtA2S26I variant was stable at 75 °C for 30 min, a condition under which wild-type EstGtA2 was completely inactivated. The esterification rate by the EstGtA2S26I variant reached 90%, and the MAG rate was 96%. The addition of alkali and the use of a thermal-tolerant enzyme were important for obtaining high-yield MAG in a solvent-free two-phase system utilizing EstGtA2.


Subject(s)
Carboxylesterase , Geobacillus , Carboxylesterase/metabolism , Enzymes, Immobilized , Esterification , Fatty Acids , Geobacillus/genetics , Glycerol , Monoglycerides , Solvents
3.
FEMS Microbiol Lett ; 369(1)2022 02 22.
Article in English | MEDLINE | ID: mdl-35137045

ABSTRACT

The Mucorales fungal genus Rhizopus is used for the industrial production of organic acids, enzymes and fermented foods. The metabolic engineering efficiency of Rhizopus could be improved using gene manipulation; however, exogenous DNA rarely integrates into the host genome. Consequently, a genetic tool for Mucorales fungi needs to be developed. Recently, programmable nucleases that generate DNA double-strand breaks (DSBs) at specific genomic loci have been used for genome editing in various organisms. In this study, we examined gene disruption in Rhizopus oryzae using transcription activator-like effector nucleases (TALENs), with and without exonuclease overexpression. TALENs with an overexpressing exonuclease induced DSBs, followed by target site deletions. Although DSBs are repaired mainly by nonhomologous end joining in most organisms, our results suggested that in R. oryzae microhomology-mediated end joining was the major DSB repair system. Our gene manipulation method using TALENs coupled with exonuclease overexpression contributes to basic scientific knowledge and the metabolic engineering of Rhizopus.


Subject(s)
Mucorales , Transcription Activator-Like Effector Nucleases , Exonucleases , Gene Editing/methods , Mucorales/genetics , Mucorales/metabolism , Rhizopus oryzae , Transcription Activator-Like Effector Nucleases/genetics , Transcription Activator-Like Effector Nucleases/metabolism
4.
FEMS Yeast Res ; 19(2)2019 03 01.
Article in English | MEDLINE | ID: mdl-30753455

ABSTRACT

The yeast Starmerella bombicola NBRC10243 is an excellent producer of sophorolipids, which are among the most useful biosurfactants. The primary alcoholic metabolic pathway of S. bombicola has been elucidated using alcohol oxidase FAO1, but the secondary alcohol metabolic pathway remains unknown. Although the FAO1 mutant was unable to grow with secondary alcohols and seemed to be involved in the secondary alcohol metabolism pathway of S. bombicola, it had very low activity toward secondary alcohols. By analyzing the products of secondary alcohol metabolism, alkyl polyglucosides hydroxylated at the ω position in the alkyl chain of the secondary alcohol were observed in the FAO1 mutant, but not in the wild-type yeast. In the double mutant of FAO1 and UGTA1, accumulation of 1,13-tetradecandiol and 2,13-tetradecandiol was observed. The above results indicated that hydroxylation occurred first at the ω and ω-1 positions in the secondary alcohol metabolism of S. bombicola, followed by primary alcohol oxidation.


Subject(s)
Alcohol Oxidoreductases/metabolism , Alcohols/metabolism , Metabolic Networks and Pathways , Saccharomycetales/enzymology , Saccharomycetales/metabolism , Alcohol Oxidoreductases/genetics , Gene Deletion , Hydroxylation , Saccharomycetales/genetics , Saccharomycetales/growth & development
5.
Appl Microbiol Biotechnol ; 100(22): 9519-9528, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27383605

ABSTRACT

Alkyl polyglucosides (APGs), which were first commercialized in the 1990s, are mild, non-ionic surfactants comprising fatty alcohols and glucose derived from recyclable starch. APGs have good properties as cleaners, foaming agents, and emulsifiers, and they do not undergo hydrolysis at an alkaline pH. In addition to their advantages over traditional synthetic surfactants, APGs are low-irritant surfactants that are nontoxic and easily degradable in the environment. Thus, APGs are considered to be environmentally friendly surfactants. Starmerella bombicola glycosylates long-chain omega or omega-1 hydroxy fatty acids, and it also directly glycosylates secondary alcohols. Although it is generally difficult to directly glycosylate primary alcohols, they are easily converted to the corresponding fatty acids by S. bombicola because of its strong alcohol oxidase activity. To redirect unconventional substrates toward APG synthesis, the long-chain alcohol oxidation pathway was blocked by knocking out the fatty alcohol oxidase gene. The complete sequence of the S. bombicola FAO1 gene (2046 bp) was cloned, and the obtained nucleotide sequence was used to construct a knockout cassette. An FAO1 knockout mutant with the correct genotype and phenotype was evaluated by fermentation on 1-tetradecanol. The mutant produced tetradecyl disaccharides and tetradecanediol tetrasaccharides. The APGs and diol polyglucosides (DPGs) production of the mutant was 27.3 g/L ((APGs + DPGs)/de novo sophorolipids ratio was about 15:1), while the parent strain did not produce APG or DPG. These data indicate that the substrates had been redirected toward novel glycolipids synthesis in the mutant.


Subject(s)
Alcohol Oxidoreductases/genetics , Alcohol Oxidoreductases/metabolism , Gene Deletion , Glycolipids/metabolism , Saccharomycetales/genetics , Saccharomycetales/metabolism , Gene Knockout Techniques
6.
Biosci Biotechnol Biochem ; 79(3): 505-11, 2015.
Article in English | MEDLINE | ID: mdl-25402593

ABSTRACT

Dipicolinic acid (DPA) is a multi-functional agent for cosmetics, antimicrobial products, detergents, and functional polymers. The aim of this study was to design a new method for producing DPA from renewable material. The Bacillus subtilis spoVF operon encodes enzymes for DPA synthase and the part of lysine biosynthetic pathway. However, DPA is only synthesized in the sporulation phase, so the productivity of DPA is low level. Here, we report that DPA synthase was expressed in vegetative cells, and DPA was produced in the culture medium by replacement of the spoVFA promoter with other highly expressed promoter in B. subtilis vegetative cells, such as spoVG promoter. DPA levels were increased in the culture medium of genetically modified strains. DPA productivity was significantly improved up to 29.14 g/L in 72 h culture by improving the medium composition using a two-step optimization technique with the Taguchi methodology.


Subject(s)
Bacillus subtilis/enzymology , Bacillus subtilis/genetics , Bacterial Proteins/genetics , Culture Media/chemistry , Genetic Engineering , Operon/genetics , Oxidoreductases/genetics , Picolinic Acids/metabolism , Bacillus subtilis/growth & development , Bacillus subtilis/metabolism , Bacterial Proteins/metabolism , DNA, Recombinant/genetics , Oxidoreductases/metabolism
7.
J Bacteriol ; 187(20): 7038-44, 2005 Oct.
Article in English | MEDLINE | ID: mdl-16199574

ABSTRACT

A key step in amino sugar metabolism is the interconversion between fructose-6-phosphate (Fru6P) and glucosamine-6-phosphate (GlcN6P). This conversion is catalyzed in the catabolic and anabolic directions by GlcN6P deaminase and GlcN6P synthase, respectively, two enzymes that show no relationship with one another in terms of primary structure. In this study, we examined the catalytic properties and regulatory features of the glmD gene product (GlmD(Tk)) present within a chitin degradation gene cluster in the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1. Although the protein GlmD(Tk) was predicted as a probable sugar isomerase related to the C-terminal sugar isomerase domain of GlcN6P synthase, the recombinant GlmD(Tk) clearly exhibited GlcN6P deaminase activity, generating Fru6P and ammonia from GlcN6P. This enzyme also catalyzed the reverse reaction, the ammonia-dependent amination/isomerization of Fru6P to GlcN6P, whereas no GlcN6P synthase activity dependent on glutamine was observed. Kinetic analyses clarified the preference of this enzyme for the deaminase reaction rather than the reverse one, consistent with the catabolic function of GlmD(Tk). In T. kodakaraensis cells, glmD(Tk) was polycistronically transcribed together with upstream genes encoding an ABC transporter and a downstream exo-beta-glucosaminidase gene (glmA(Tk)) within the gene cluster, and their expression was induced by the chitin degradation intermediate, diacetylchitobiose. The results presented here indicate that GlmD(Tk) is actually a GlcN6P deaminase functioning in the entry of chitin-derived monosaccharides to glycolysis in this hyperthermophile. This enzyme is the first example of an archaeal GlcN6P deaminase and is a structurally novel type distinct from any previously known GlcN6P deaminase.


Subject(s)
Aldose-Ketose Isomerases/genetics , Aldose-Ketose Isomerases/metabolism , Thermococcus/enzymology , Thermococcus/genetics , Archaeal Proteins/genetics , Archaeal Proteins/metabolism , Chitin/metabolism , Gene Expression Regulation, Archaeal , Gene Expression Regulation, Enzymologic , Isomerases/genetics , Isomerases/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...