Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
2.
Oncotarget ; 7(22): 33297-305, 2016 May 31.
Article in English | MEDLINE | ID: mdl-27120812

ABSTRACT

The Warburg effect is a metabolic hallmark of cancer cells; cancer cells, unlike normal cells, exclusively activate glycolysis, even in the presence of enough oxygen. On the other hand, intratumoral heterogeneity is currently of interest in cancer research, including that involving cancer stem cells (CSCs). In the present study, we attempted to gain an understanding of metabolism in CSCs that is distinct from that in non-CSCs. After forming spheroids from the OVTOKO (ovarian clear cell adenocarcinoma) and SiHa (cervical squamous cell carcinoma) cell lines, the metabolites of these cells were compared with the metabolites of cancer cells that were cultured in adherent plates. A principle components analysis clearly divided their metabolic features. Amino acids that participate in tricarboxylic acid (TCA) cycle reactions, such as serine and glutamine, were significantly increased in the spheroids. Indeed, spheroids from each cell line contained more total adenylates than did their corresponding cells in adherent cultures. This study demonstrated that cancer metabolism is not limited to aerobic glycolysis (i.e. the Warburg effect), but is flexible and context-dependent. In addition, activation of TCA cycles was suggested to be a metabolic feature of CSCs that was distinct from non-CSCs. The amino acid metabolic pathways discussed here are already considered as targets for cancer therapy, and they are additionally proposed as potential targets for CSC treatment.


Subject(s)
Adenocarcinoma, Clear Cell/metabolism , Amino Acids/metabolism , Carcinoma, Squamous Cell/metabolism , Cellular Reprogramming , Citric Acid Cycle , Neoplastic Stem Cells/metabolism , Ovarian Neoplasms/metabolism , Uterine Cervical Neoplasms/metabolism , Adenocarcinoma, Clear Cell/pathology , Carcinoma, Squamous Cell/pathology , Cell Adhesion , Cell Line, Tumor , Female , Glycolysis , Humans , Metabolomics/methods , Neoplastic Stem Cells/pathology , Ovarian Neoplasms/pathology , Phenotype , Principal Component Analysis , Reactive Oxygen Species/metabolism , Spheroids, Cellular , Uterine Cervical Neoplasms/pathology
3.
Oncol Rep ; 35(1): 391-7, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26530461

ABSTRACT

Gremlin 1 is one of the bone morphogenetic protein (BMP) antagonists and is also related to differentiation in combination with BMPs and is associated with various types of diseases. Gremlin 1 is overexpressed in various types of human cancers and has been reported to play a role in cervical cancer oncogenesis. However, there is no report concerning the relationship between Gremlin 1 and cervical cancer stem cells (CSCs). The objective of the present study was to identify the clinical significance of Gremlin 1 in cervical cancer and its effects on CSC-like properties in vitro. Clinical samples were obtained. Gremlin 1 mRNA expression levels in the cervical cancer tissues were measured by RT-qPCR and assessed for correlation with their clinical prognosis [overall survival (OS), progression-free survival (PFS)] and with other prognostic factors. In vitro, cervical cancer, CaSki cells, exposed to Gremlin 1 (1,000 ng/ml) for 24 h were evaluated for expression of undifferentiated-cell markers (Nanog, Oct3/4, Sox2) by RT-qPCR, the population of ALDH-positive cells by flow cytometry and sphere-forming ability on a ultra-low attachment culture dish. Cervical cancer tissues from 104 patients were collected. A high mRNA expression level of Gremlin 1 was an independent poor prognostic factor of PFS but not of OS. A high mRNA expression level of Gremlin 1 was correlated with bulky (>4 cm) tumors. The Nanog mRNA expression level was significantly increased in the CaSki cells exposed to Gremlin 1 (P=0.0008) but not Oct3/4 and Sox2 mRNA expression levels. The population of ALDH-positive cells in the Gremlin 1-exposed cells was 1.41-fold higher compared with the control (P=0.0184). Sphere-forming ability was increased when 1,000 Gremlin 1-exposed cells were seeded (P=0.0379). In cervical cancer, it is suggested that Gremlin 1 may have a role in clinical recurrence and maintaining CSC-like properties.


Subject(s)
Intercellular Signaling Peptides and Proteins/genetics , Intercellular Signaling Peptides and Proteins/metabolism , Neoplastic Stem Cells/pathology , Uterine Cervical Neoplasms/pathology , Adult , Aged , Cell Differentiation , Cell Line, Tumor , Cell Proliferation , Disease-Free Survival , Female , Gene Expression Regulation, Neoplastic , Humans , Middle Aged , Neoplasm Recurrence, Local , Neoplastic Stem Cells/metabolism , Prognosis , Survival Analysis , Uterine Cervical Neoplasms/genetics , Uterine Cervical Neoplasms/metabolism , Young Adult
4.
Int J Oncol ; 48(2): 829-35, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26676222

ABSTRACT

The plasminogen activator (PA) system consists of plasminogen activator inhibitor type 1 (PAI-1), urokinase-type plasminogen activator and its receptor (uPA and uPAR). PAI-1 inhibits the activation of uPA (which converts plasminogen to plasmin), and is involved in cancer invasion and metastasis, by remodeling the extracellular matrix (ECM) through regulating plasmin. Cancer stem cells (CSCs) are a small subset of cells within tumors, and are thought to be involved in tumor recurrence and metastasis. Considering these facts, we investigated the relationship between PAI-1 and cervical CSCs. We used ALDH1 as a marker of cervical CSCs. First, we demonstrated that culturing ALDH1-high cells and ALDH-low cells on collagen IV-coted plates increased their expression of active PAI-1 (ELISA), and these increases were suggested to be at mRNA expression levels (RT-qPCR). Secondly, we demonstrated PAI-1 was indeed involved in the ECM maintenance. With gelatin zymography assays, we found that ALDH1-high cells and ALDH-low cells expressed pro-matrix metalloproteinase-2 (pro-MMP-2) irrespective of their coatings. With gelatinase/collagenase assay kit, we confirmed that collagenase activity was increased when ALDH1-low cells were exposed to TM5275, a small molecule inhibitor of PAI-1. Putting the data together, we hypothesized that cancer cells adhered to basal membrane secrete abundant PAI-1, on the other hand, cancer cells (especially CSCs rather than non-CSCs) distant from basal membrane secrete less PAI-1, which makes the ECM surrounding CSCs more susceptible to degradation. Our study could be an explanation of conflicting reports, where some researchers found negative impacts of PAI-1 expression on clinical outcomes and others not, by considering the concept of CSCs.


Subject(s)
Extracellular Matrix/genetics , Neoplastic Stem Cells/metabolism , Plasminogen Activator Inhibitor 1/genetics , Uterine Cervical Neoplasms/genetics , Aldehyde Dehydrogenase 1 Family , Cell Line, Tumor , Female , Humans , Isoenzymes/genetics , Matrix Metalloproteinase 2/genetics , Neoplastic Stem Cells/pathology , Plasminogen Activators/genetics , RNA, Messenger/genetics , Retinal Dehydrogenase/genetics , Uterine Cervical Neoplasms/pathology
5.
Anticancer Res ; 28(1A): 171-8, 2008.
Article in English | MEDLINE | ID: mdl-18383842

ABSTRACT

The effect of 20 trihaloacetylazulene derivatives with one halogen atom, on nitric oxide (NO) production by mouse macrophage-like cells Raw 264.7 was investigated. 2-Methoxyazulenes and 2-ethoxyazulenes exhibited comparable cytotoxicity. Trichloroacetylazulenes generally exhibited higher cytotoxicity, as compared with the corresponding trifluoroacetylazulenes. Substitution of chloride, bromide or iodine at the C-3 position further enhanced their cytotoxicity. All of these compounds failed to stimulate the Raw 264.7 cells to produce detectable amounts of NO, but did inhibit NO production by LPS-activated Raw 264.7 cells to different extents. 1-Trichloroacetyl-2-methoxyazulene and 1-trichloroacetyl-2-ethoxyazulene, with less cytotoxic activity, inhibited NO production to the greatest extent, producing the highest selectivity index (SI) of >24.7 and >28.7, respectively. This was accompanied by the efficient inhibition of inducible NO synthase (iNOS) mRNA expression, but not by iNOS protein abundance. Electron spin resonance (ESR) spectroscopy showed that neither of these compounds produced radicals, nor scavenged NO, superoxide anion or diphenyl-2-picrylhydrazyl radicals. The present study suggests that the inhibitory effects of trifluoroacetylazulenes and trichloroacetylazulenes on NO production by activated macrophages might be derived from the perturbation of NO anabolism (inhibition of iNOS mRNA expression and possibly the inactivation of iNOS protein) rather than NO catabolism (NO scavenging).


Subject(s)
Azulenes/pharmacology , Macrophages/drug effects , Nitric Oxide/antagonists & inhibitors , Acetylation , Animals , Electron Spin Resonance Spectroscopy , Free Radical Scavengers/pharmacology , Hydrocarbons, Halogenated/pharmacology , Lipopolysaccharides/pharmacology , Macrophages/enzymology , Macrophages/metabolism , Mice , Nitric Oxide/biosynthesis , Nitric Oxide Synthase Type II/biosynthesis , Nitric Oxide Synthase Type II/genetics , Nitric Oxide Synthase Type II/metabolism , RNA, Messenger/biosynthesis , RNA, Messenger/genetics , Structure-Activity Relationship
6.
Anticancer Res ; 27(1A): 133-43, 2007.
Article in English | MEDLINE | ID: mdl-17352225

ABSTRACT

Twenty trihaloacetylazulene derivatives with one atom of fluorine, chlorine, bromine or iodine was investigated for their tumor-specific cytotoxicity and apoptosis-inducing activity against three human normal cells (gingival fibroblast, HGF; pulp cell, HPC; periodontal ligament fibroblast, HPLF) and four human tumor cell lines (squamous cell carcinoma, HSC-2, HSC-3, HSC-4; promyelocytic leukemia, HL-60). There was no apparent difference in the cytotoxic activity between 2-methoxyazulenes [1a-1e, 2a-2e] and 2-ethoxyazulenes [3a-3e, 4a-4e]. Trichloroacetylazulenes [2a-2e, 4a-4e] generally showed higher cytotoxicity and tumor-specificity (expressed as a TS value) as compared with the corresponding trifluoroacetylazulenes [1a-1e, 3a-3e]. Substitution of chloride [1c, 2c, 3c. 4c], bromide [1d, 2d, 3d, 4d] or iodine [1e, 2e, 3e, 4e] at the C-3 position further enhanced cytotoxic activity against four tumor cell lines, especially HL-60 cells. Among twenty trihaloacetylazulene derivatives, two compounds [2d] and [4c] showed the highest tumor specificity (TS = > 3.5 and > 2.5, respectively). Compounds [2d] and [4c] induced apoptotic cell death characterized by caspase-3, -8 and -9 activation and internucleosomal DNA fragmentation in HL-60 cells. On the other hand, compounds [2d] and [4c] induced autophagic cell death characterized by lower activation of caspases, lack of DNA fragmentation, vacuolization and autophagosome formation detected by acridine orange and LC3-GFP fluorescence, without the decline of the intracellular concentration of three major polyamines in HSC-4 cells. The cytotoxic activity of [4c], but not [2d], was slightly reduced by 3-methyladenine, an inhibitor of autophagy. These results suggest the diversity of cell death type induced in human tumor cell lines by trihaloacetylazulene derivatives.


Subject(s)
Apoptosis/drug effects , Autophagy/drug effects , Azulenes/pharmacology , Carcinoma, Squamous Cell/drug therapy , Hydrocarbons, Halogenated/pharmacology , Mouth Neoplasms/drug therapy , Apoptosis/physiology , Autophagy/physiology , Azulenes/chemistry , Carcinoma, Squamous Cell/pathology , Cell Line , Cell Line, Tumor , Drug Screening Assays, Antitumor , Fibroblasts/cytology , Fibroblasts/drug effects , HL-60 Cells , Humans , Hydrocarbons, Halogenated/chemistry , Mouth Neoplasms/pathology , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...