Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 4699, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38844471

ABSTRACT

Direct conversion from terahertz photon to charge current is a key phenomenon for terahertz photonics. Quantum geometrical description of optical processes in crystalline solids predicts existence of field-unbiased dc photocurrent arising from terahertz-light generation of magnetic excitations in multiferroics, potentially leading to fast and energy-efficient terahertz devices. Here, we demonstrate the dc charge current generation from terahertz magnetic excitations in multiferroic perovskite manganites with spin-driven ferroelectricity, while keeping an insulating state with no free carrier. It is also revealed that electromagnon, which ranges sub-terahertz to 2 THz, as well as antiferromagnetic resonance shows the giant conversion efficiency. Polar asymmetry induced by the cycloidal spin order gives rise to this terahertz-photon-induced dc photocurrent, and no external magnetic and electric bias field are required for this conversion process. The observed phenomena are beyond the conventional photovoltaics in semi-classical regime and demonstrate the essential role of quantum geometrical aspect in low-energy optical processes. Our finding establishes a paradigm of terahertz photovoltaic phenomena, paving a way for terahertz photonic devices and energy harvesting.

2.
Proc Natl Acad Sci U S A ; 121(12): e2316910121, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38483985

ABSTRACT

Weyl semimetals resulting from either inversion (P) or time-reversal (T) symmetry breaking have been revealed to show the record-breaking large optical response due to intense Berry curvature of Weyl-node pairs. Different classes of Weyl semimetals with both P and T symmetry breaking potentially exhibit optical magnetoelectric (ME) responses, which are essentially distinct from the previously observed optical responses in conventional Weyl semimetals, leading to the versatile functions such as directional dependence for light propagation and gyrotropic effects. However, such optical ME phenomena of (semi)metallic systems have remained elusive so far. Here, we show the large nonlinear optical ME response in noncentrosymmetric magnetic Weyl semimetal PrAlGe, in which the polar structural asymmetry and ferromagnetic ordering break P and T symmetry. We observe the giant second harmonic generation (SHG) arising from the P symmetry breaking in the paramagnetic phase, being comparable to the largest SHG response reported in Weyl semimetal TaAs. In the ferromagnetically ordered phase, it is found that interference between this nonmagnetic SHG and the magnetically induced SHG emerging due to both P and T symmetry breaking results in the magnetic field switching of SHG intensity. Furthermore, such an interference effect critically depends on the light-propagating direction. The corresponding magnetically induced nonlinear susceptibility is significantly larger than the prototypical ME material, manifesting the existence of the strong nonlinear dynamical ME coupling. The present findings establish the unique optical functionality of P- and T-symmetry broken ME topological semimetals.

3.
Nat Commun ; 14(1): 5416, 2023 Sep 05.
Article in English | MEDLINE | ID: mdl-37669971

ABSTRACT

The magnetic skyrmion is a spin-swirling topological object characterized by its nontrivial winding number, holding potential for next-generation spintronic devices. While optical readout has become increasingly important towards the high integration and ultrafast operation of those devices, the optical response of skyrmions has remained elusive. Here, we show the magneto-optical Kerr effect (MOKE) induced by the skyrmion formation, i.e., topological MOKE, in Gd2PdSi3. The significantly enhanced optical rotation found in the skyrmion phase demonstrates the emergence of topological MOKE, exemplifying the light-skyrmion interaction arising from the emergent gauge field. This gauge field in momentum space causes a dramatic reconstruction of the electronic band structure, giving rise to magneto-optical activity ranging up to the sub-eV region. The present findings pave a way for photonic technology based on skyrmionics.

4.
Proc Natl Acad Sci U S A ; 119(14): e2122313119, 2022 Apr 05.
Article in English | MEDLINE | ID: mdl-35344426

ABSTRACT

SignificanceThe quantum-mechanical geometric phase of electrons provides various phenomena such as the dissipationless photocurrent generation through the shift current mechanism. So far, the photocurrent generations are limited to above or near the band-gap photon energy, which contradicts the increasing demand of the low-energy photonic functionality. We demonstrate the photocurrent through the optical phonon excitations in ferroelectric BaTiO3 by using the terahertz light with photon energy far below the band gap. This photocurrent without electron-hole pair generation is never explained by the semiclassical treatment of electrons and only arises from the quantum-mechanical geometric phase. The observed photon-to-current conversion efficiency is as large as that for electronic excitation, which can be well accounted for by newly developed theoretical formulation of shift current.

5.
Science ; 372(6541): 496-500, 2021 04 30.
Article in English | MEDLINE | ID: mdl-33926951

ABSTRACT

Controlling the chiral degree of freedom in matter has long been an important issue for many fields of science. The spin-spiral order, which exhibits a strong magnetoelectric coupling, gives rise to chirality irrespective of the atomic arrangement of matter. Here, we report the resonantly enhanced natural optical activity on the electrically active magnetic excitation, that is, electromagnon, in multiferroic cupric oxide. The electric field control of the natural optical activity is demonstrated through magnetically induced chirality endowed with magnetoelectric coupling. These optical properties inherent to multiferroics may lead to optical devices based on the control of chirality.

6.
Nat Commun ; 7: 12245, 2016 07 20.
Article in English | MEDLINE | ID: mdl-27436710

ABSTRACT

Electrodynamic responses from three-dimensional topological insulators are characterized by the universal magnetoelectric term constituent of the Lagrangian formalism. The quantized magnetoelectric coupling, which is generally referred to as topological magnetoelectric effect, has been predicted to induce exotic phenomena including the universal low-energy magneto-optical effects. Here we report the experimental indication of the topological magnetoelectric effect, which is exemplified by magneto-optical Faraday and Kerr rotations in the quantum anomalous Hall states of magnetic topological insulator surfaces by terahertz magneto-optics. The universal relation composed of the observed Faraday and Kerr rotation angles but not of any material parameters (for example, dielectric constant and magnetic susceptibility) well exhibits the trajectory towards the fine structure constant in the quantized limit.

7.
J Chem Phys ; 124(22): 221104, 2006 Jun 14.
Article in English | MEDLINE | ID: mdl-16784256

ABSTRACT

We investigated nuclear wave packet dynamics in the excited state of KI F centers at 10 K using time-resolved luminescence spectroscopy. Observed transient spectrum is divided into oscillatory and non-oscillatory components. The former lasts over 11 ps without appreciable damping and is attributed to the oscillation of the wave packet consisting mainly of the A(1g) mode around the center. The non-oscillatory part rises quickly after photo-excitation exhibiting a cooling of incoherent vibrational population. This behavior suggests the fast energy dissipation due to the dephasing of the bulk phonon modes.

SELECTION OF CITATIONS
SEARCH DETAIL
...