Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Cell Biol ; 223(2)2024 02 05.
Article in English | MEDLINE | ID: mdl-38197897

ABSTRACT

Cytoplasmic aggregation of TDP-43 in neurons is a pathological feature common to amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). We demonstrate that the IκB kinase (IKK) complex promotes the degradation of cytoplasmic TDP-43 through proteasomes. While IKKß is a major factor in TDP-43 degradation, IKKα acts as a cofactor, and NEMO functions as a scaffold for the recruitment of TDP-43 to the IKK complex. Furthermore, we identified IKKß-induced phosphorylation sites of TDP-43 and found that phosphorylation at Thr8 and Ser92 is important for the reduction of TDP-43 by IKK. TDP-43 phosphorylation at Ser92 was detected in a pattern different from that of C-terminal phosphorylation in the pathological inclusion of ALS. IKKß was also found to significantly reduce the expression level and toxicity of the disease-causing TDP-43 mutation. Finally, the favorable effect of IKKß on TDP-43 aggregation was confirmed in the hippocampus of mice. IKK and the N-terminal phosphorylation of TDP-43 are potential therapeutic targets for ALS and FTLD.


Subject(s)
Amyotrophic Lateral Sclerosis , DNA-Binding Proteins , Frontotemporal Dementia , Frontotemporal Lobar Degeneration , I-kappa B Kinase , Animals , Mice , Amyotrophic Lateral Sclerosis/genetics , Disease Models, Animal , DNA-Binding Proteins/genetics , I-kappa B Kinase/genetics , Proteasome Endopeptidase Complex , Humans
2.
J Org Chem ; 88(15): 10617-10631, 2023 08 04.
Article in English | MEDLINE | ID: mdl-37462534

ABSTRACT

In this study, we successfully synthesized several kinds of P-modified nucleic acids from boranophosphate DNAs via an acyl phosphite intermediate in solution and on a solid support. In the solution-phase synthesis, phosphorothioate diester, phosphotriester, and phosphoramidate diester were synthesized in a one-pot reaction from boranophosphodiester via the conversion of an acyl phosphite as a key intermediate. In addition, doubly P-modified nucleic acid derivatives which were difficult to synthesize by the phosphoramidite and H-phosphonate methods were also obtained by the conversion reaction. In the solid-phase synthesis, a boranophosphate derivative was synthesized on a solid support using the H-boranophosphonate method. Then, an acyl phosphite intermediate was formed by treatment with pivaloyl chloride in pyridine, followed by appropriate transformations to obtain the P-modified derivatives such as phosphotriester and phosphorothioate diester. Notably, it was suggested that the conversion reaction of a boranophosphate to a phosphorothioate diester proceeded with retention of the stereochemistry of the phosphorous center. In addition, a phosphorothioate/phosphate chimeric dodecamer was successfully synthesized from a boranophosphate/phosphate chimeric dodecamer using the same strategy. Therefore, boranophosphate derivatives are versatile precursors for the synthesis of P-modified DNA, including chimeric derivatives.


Subject(s)
Phosphites , Phosphates , DNA
3.
J Org Chem ; 87(6): 3895-3909, 2022 03 18.
Article in English | MEDLINE | ID: mdl-34908418

ABSTRACT

In this study, we successfully synthesized boranophosphate (PB), phosphorothioate (PS), and phosphate (PO) chimeric oligonucleotides (ODNs) as a candidate for the antisense oligonucleotides (ASOs). The PB/PS/PO-ODNs were synthesized utilizing H-boranophosphonate, H-phosphonothioate, and H-phosphonate monomers. Each monomer was condensed with a hydroxy group to create H-boranophosphonate, H-phosphonothioate, and H-phosphonate diester linkages, which were oxidized into PB, PS, and PO linkages in the final stage of the synthesis, respectively. As for condensation of an H-phosphonothioate monomer, regulating chemoselectivity was necessary since the monomer has two nucleophilic centers: S and O atoms. To deal with this problem, we used phosphonium-type condensing reagents, which could control the chemoselectivity. In this strategy, we could synthesize PB/PS/PO oligomers, including a 2'-OMe gapmer-type dodecamer. The physiological and biological properties of the synthesized chimeric ODNs were also evaluated. Insights from the evaluation of physiological and biological properties suggested that the introduction of suitable P-modification and sugar modification at proper sites of ODNs would control the duplex stability, nuclease resistance, RNase H-inducing ability, and one base mismatch discrimination ability, which are critical properties as potent ASOs.


Subject(s)
Organophosphonates , Phosphorothioate Oligonucleotides , Boranes , Oligonucleotides, Antisense , Phosphates , Solid-Phase Synthesis Techniques
4.
J Biomed Opt ; 19(2): 021105, 2014 Feb.
Article in English | MEDLINE | ID: mdl-23846119

ABSTRACT

We demonstrate intensity-based optical coherence tomography (OCT) angiography using the squared difference of two sequential frames with bulk-tissue-motion (BTM) correction. This motion correction was performed by minimization of the sum of the pixel values using axial- and lateral-pixel-shifted structural OCT images. We extract the BTM-corrected image from a total of 25 calculated OCT angiographic images. Image processing was accelerated by a graphics processing unit (GPU) with many stream processors to optimize the parallel processing procedure. The GPU processing rate was faster than that of a line scan camera (46.9 kHz). Our OCT system provides the means of displaying structural OCT images and BTM-corrected OCT angiographic images in real time.


Subject(s)
Angiography/methods , Tomography, Optical Coherence/methods , Angiography/instrumentation , Computer Graphics , Computer Systems , Humans , Image Interpretation, Computer-Assisted , Motion , Nails/blood supply , Tomography, Optical Coherence/instrumentation
SELECTION OF CITATIONS
SEARCH DETAIL
...