Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Case Rep Nephrol Dial ; 8(3): 198-206, 2018.
Article in English | MEDLINE | ID: mdl-30397600

ABSTRACT

Viral infections in patients with post-kidney transplantation are often difficult to diagnose as well as treat. We herein report three cases with severe viral infections after kidney transplantation. All their causative pathogens could be detected promptly by polymerase chain reaction and flow cytometry during the early stages of infection. These examinations would also be of great use to monitor therapeutic responses and disease activity. It is indeed true that no specific treatment is available for most of the viral infections, but we should be aware that some infections, such as Epstein-Barr virus infection, can be treatable with prompt and specific treatment, such as rituximab.

2.
J Med Virol ; 89(8): 1395-1403, 2017 08.
Article in English | MEDLINE | ID: mdl-28229467

ABSTRACT

Coxsackievirus A6 (CV-A6) is an enterovirus, which is known to cause herpangina. However, since 2009 it has frequently been isolated from children with hand, foot, and mouth disease (HFMD). In Japan, CV-A6 has been linked to HFMD outbreaks in 2011 and 2013. In this study, the full-length genome sequencing of CV-A6 strains were analyzed to identify the association with clinical manifestations. Five thousand six hundred and twelve children with suspected enterovirus infection (0-17 years old) between 1999 and 2013 in Hyogo Prefecture, Japan, were enrolled. Enterovirus infection was confirmed with reverse transcriptase-PCR in 753 children (791 samples), 127 of whom (133 samples) were positive for CV-A6 based on the direct sequencing of the VP4 region. The complete genomes of CV-A6 from 22 positive patients with different clinical manifestations were investigated. A phylogenetic analysis divided these 22 strains into two clusters based on the VP1 region; cluster I contained strains collected in 1999-2009 and mostly related to herpangina, and cluster II contained strains collected in 2011-2013 and related to HFMD outbreak. Based on the full-length polyprotein analysis, the amino acid differences between the strains in cluster I and II were 97.7 ± 0.28%. Amino acid differences were detected in 17 positions within the polyprotein. Strains collected in 1999-2009 and those in 2011-2013 were separately clustered by phylogenetic analysis based on 5'UTR and 3Dpol region, as well as VP1 region. In conclusion, HFMD outbreaks by CV-A6 were recently frequent in Japan and the accumulation of genomic change might be associated with the clinical course.


Subject(s)
Coxsackievirus Infections/pathology , Coxsackievirus Infections/virology , Enterovirus/classification , Enterovirus/isolation & purification , Genome, Viral , Genotype , Sequence Analysis, DNA , Adolescent , Child , Child, Preschool , Cluster Analysis , Enterovirus/genetics , Female , Humans , Infant , Japan , Male , Molecular Epidemiology , Phylogeny
4.
J Pept Sci ; 10(10): 612-21, 2004 Oct.
Article in English | MEDLINE | ID: mdl-15526710

ABSTRACT

The conversion of soluble, nontoxic amyloid beta-protein (Abeta) to aggregated, toxic Abeta rich in beta-sheet structures is considered to be the key step in the development of Alzheimer's disease. Therefore, extensive studies have been carried out on the mechanisms involved in Abeta aggregation and the characterization of Abeta aggregates formed in aqueous solutions mimicking biological fluids. On the other hand, several investigators pointed out that membranes play an important role in Abeta aggregation. However, it remains unclear whether Abeta aggregates formed in solution and membranes are identical and whether the former can bind to membranes. In this study, using a dye-labeled Abeta-(1-40) as well as native Abeta-(1-40), the properties of Abeta aggregates formed in buffer and raft-like membranes composed of monosialoganglioside GM1/cholesterol/sphingomyelin were compared. Fourier transform infrared spectroscopic measurements suggested that Abeta aggregates formed in buffer and in membranes have different beta-sheet structures. Fluorescence experiments revealed that Abeta aggregated in buffer did not show any affinity for membranes.


Subject(s)
Amyloid beta-Peptides/chemistry , Liposomes/chemistry , Alzheimer Disease/etiology , Cholesterol , Dimerization , G(M1) Ganglioside , Humans , Models, Biological , Peptide Fragments/chemistry , Protein Binding , Protein Structure, Secondary , Spectroscopy, Fourier Transform Infrared , Sphingomyelins
SELECTION OF CITATIONS
SEARCH DETAIL
...