Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Colloids Surf B Biointerfaces ; 123: 246-53, 2014 Nov 01.
Article in English | MEDLINE | ID: mdl-25264284

ABSTRACT

The effect of the fluorination degree of hydrophobic chains on the monolayer behavior of unsaturated diacylphosphatidylcholines (PCs) was examined by employing a series of PCs bearing partially fluorinated 9-octadecynoyl (stearoloyl) groups (DFnStPCs, n: the number of fluorinated carbon atoms in a stearoloyl group; n=1, 2, 4, 8), including their hydrophobic parts--partially fluorinated stearolic acids (FnStAs)--at the air-water interface. π-A isotherm measurements and Brewster angle microscope observations revealed: (i) all DFnStPCs including FnStAs form monolayers of liquid character at 25 °C; (ii) they form more expanded monolayers than their non-fluorinated counterparts, distearoloyl-PC (DStPC) and stearolic acid, while the monolayer stability increases with n; (iii) compared with DStPC and DF8StPC, DFnStPCs (n=1, 2, 4) in the low-π region tend to show a weakening in their self-aggregation property and an increase in the work required for monolayer compression; (iv) although DF8StPC forms the most expanded monolayer, the behavior of DF8StPC resembles that of DStPC rather than that of DFnStPCs (n=1, 2, 4). The monolayer behavior of DFnStPCs (n=1, 2, 4) is explained by postulating a flatly-lying conformation of hydrophobic chains, in which three polar parts (ester group, triple bond, CF2-CH2 linkage) in chains are immersed in the subphase at large areas. DStPC and DF8StPC lacking a CF2-CH2 linkage, however, do not likely adopt such a conformation.


Subject(s)
Air , Phosphatidylcholines/chemistry , Water , Hydrophobic and Hydrophilic Interactions , Models, Theoretical
2.
Chem Phys Lipids ; 172-173: 31-9, 2013.
Article in English | MEDLINE | ID: mdl-23680048

ABSTRACT

A series of oleic acid (OA) analogs containing terminal perfluoroalkyl groups (CF3, C2F5, n-C3F7, n-C4F9 or n-C8F17) was synthesized to clarify how the fluorinated chain length affects the stability and molecular packing of liquid-expanded OA monolayers at the air-water interface. Although the substitution of terminal CF3 group for CH3 in OA had no effect on monolayer stability, further fluorination led to a gradual increase in monolayer stability at 25 °C. Surface pressure-area isotherm revealed that partially fluorinated OA analogs form more expanded monolayers than OA at low surface pressures, and that the monolayer behavior of OA analogs with the even-carbon numbered fluorinated chain is almost the same as that of OA upon monolayer compression, whereas the behavior of OA analogs with the odd-carbon numbered fluorinated chain significantly differs from that of OA. These results indicate: (i) the terminal short part (at least C2 residue) in OA predominantly determines the liquid-expanded monolayer stability; (ii) the molecular packing state of OA may be perturbed by the substitution of a short odd-carbon numbered fluorinated chain; (iii) hence, OA analogs with even-carbon numbered chain are considered to be preferable as hydrophobic building blocks for the synthesis of fluorinated phospholipids.


Subject(s)
Air , Oleic Acid/chemistry , Water/chemistry , Halogenation , Hydrogen-Ion Concentration , Oleic Acid/chemical synthesis , Surface Properties , Temperature
3.
Phys Chem Chem Phys ; 13(16): 7322-9, 2011 Apr 28.
Article in English | MEDLINE | ID: mdl-21394371

ABSTRACT

Spirobenzopyrans, which are well known as photochromic compounds, exist as thermodynamically stable protonated ring-opened isomers (protonated merocyanine form, McH) in an acidic aqueous solution in the dark. In the present study, we investigated effects of substitution of the spirobenzopyrans on a ring-opening behavior in an aqueous system. We prepared five polymerizable spirobenzopyrans that are substituted with a methoxy group or a nitro group at the 6'- or 8'-positions and without a substituent. These monomers were copolymerized with N,N-dimethylacrylamide to evaluate the spirobenzopyrans in aqueous solution. Correlation between ring-opening rates and the kind and position of the substitution can be summarized as follows: the substitution of an electron-donating methoxy group and the substitution at the 8'-position increased the ring-opening rate, whereas the substitution of an electron-withdrawing nitro group decreased the rate. The effects of the substitution can be explained by changes in the electron density of the oxygen atom of the spirobenzopyrans.


Subject(s)
Acids/chemistry , Benzopyrans/chemistry , Electrons , Spiro Compounds/chemistry , Benzopyrans/chemical synthesis , Isomerism , Solutions/chemistry , Spectrophotometry, Ultraviolet , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...