Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Preprint in English | bioRxiv | ID: ppbiorxiv-429001

ABSTRACT

Development of effective antiviral drugs targeting the severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) are urgently needed to combat the coronavirus disease 2019 (COVID-19). Oxysterols, defined as oxidized derivatives of cholesterol, include endogenous (naturally occurring) cholesterol metabolites as well as semi-synthetic oxysterol derivatives. We have previously studied the use of semi-synthetic oxysterol derivatives as drug candidates for inhibition of cancer, fibrosis, and bone regeneration. In this study, we have screened a panel of naturally occurring and semi-synthetic oxysterol derivatives for anti-SARS-CoV-2 activity, using a cell culture infection assay. We show that the natural oxysterols, 7-ketocholesterol, 22(R)-hydroxycholesterol, 24(S)-hydroxycholesterol, and 27-hydroxycholesterol, substantially inhibited SARS-CoV-2 propagation in cultured cells. Among semi-synthetic oxysterols, Oxy186 displayed antiviral activity comparable to natural oxysterols. In addition, related oxysterol analogues Oxy210 and Oxy232 displayed more robust anti-SARS-CoV-2 activities, reducing viral replication more than 90% at 10 M and 99% at 15 M, respectively. When orally administered in mice, peak plasma concentrations of Oxy210 fall into a therapeutically relevant range (19 M), based on the dose-dependent curve for antiviral activity in our cell culture infection assay. Mechanistic studies suggest that Oxy210 reduced replication of SARS-CoV-2 with disrupting the formation of double membrane vesicles (DMVs), intracellular membrane compartments associated with viral replication. Oxy210 also inhibited the replication of hepatitis C virus, another RNA virus whose replication is associated with DMVs, but not the replication of the DMV-independent hepatitis D virus. Our study warrants further evaluation of Oxy210 and Oxy232 as a safe and reliable oral medication, which could help protect vulnerable populations with increased risk developing COVID-19.

2.
Preprint in English | bioRxiv | ID: ppbiorxiv-389726

ABSTRACT

Coronavirus disease 2019 (COVID-19) has caused serious public health, social, and economic damage worldwide and effective drugs that prevent or cure COVID-19 are urgently needed. Approved drugs including Hydroxychloroquine, Remdesivir or Interferon were reported to inhibit the infection or propagation of severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2), however, their clinical efficacies have not yet been well demonstrated. To identify drugs with higher antiviral potency, we screened approved anti-parasitic/anti-protozoal drugs and identified an anti-malarial drug, Mefloquine, which showed the highest anti-SARS-CoV-2 activity among the tested compounds. Mefloquine showed higher anti-SARS-CoV-2 activity than Hydroxychloroquine in VeroE6/TMPRSS2 and Calu-3 cells, with IC50 = 1.28 M, IC90 = 2.31 M, and IC99 = 4.39 M in VeroE6/TMPRSS2 cells. Mefloquine inhibited viral entry after viral attachment to the target cell. Combined treatment with Mefloquine and Nelfinavir, a replication inhibitor, showed synergistic antiviral activity. Our mathematical modeling based on the drug concentration in the lung predicted that Mefloquine administration at a standard treatment dosage could decline viral dynamics in patients, reduce cumulative viral load to 7% and shorten the time until virus elimination by 6.1 days. These data cumulatively underscore Mefloquine as an anti-SARS-CoV-2 entry inhibitor.

3.
Preprint in English | medRxiv | ID: ppmedrxiv-20143958

ABSTRACT

BackgroundAfter the first case of COVID-19 in Japan on 15 January 2020, multiple nationwide COVID-19 clusters were identified by the end of February. The Japanese government focused on mitigating emerging COVID-19 clusters by conducting active nationwide epidemiological surveillance. However, an increasing number of cases appeared until early April, many with unclear infection routes exhibiting no recent history of travel outside Japan. We aimed to evaluate the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genome sequences from COVID-19 cases until early April and characterise the genealogical networks to demonstrate possible routes of spread in Japan. MethodsNasopharyngeal specimens were collected from patients and a quantitative reverse transcription polymerase chain reaction testing for SARS-CoV-2 was performed. Positive RNA samples were subjected whole genome sequencing and a haplotype network analysis was performed. FindingsSome of the primary clusters identified during January and February in Japan directly descended from Wuhan-Hu-1-related isolates in China and other distinct clusters. Clusters were almost contained until mid-March; the haplotype network analysis demonstrated that COVID-19 cases from late March through early April may have caused an additional large cluster related to the outbreak in Europe, leading to additional spread within Japan. National self-restraint during February was effective in mitigating the COVID-19 spread, but late action on stopping immigration and declaring national emergency in Japan might be involved in the later increase in cases. InterpretationGenome surveillance suggested that at least two distinct SARS-CoV-2 introductions from China and other countries occurred. FundingJapan Agency for Medical Research and Development.

4.
Preprint in English | medRxiv | ID: ppmedrxiv-20118067

ABSTRACT

Development of an effective antiviral drug for COVID-19 is a global health priority. Although several candidate drugs have been identified through in vitro and in vivo models, consistent and compelling evidence for effective drugs from clinical studies is limited. The lack of evidence could be in part due to heterogeneity of virus dynamics among patients and late initiation of treatment. We first quantified the heterogeneity of viral dynamics which could be a confounder in compassionate use programs. Second, we demonstrated that an antiviral drug is unlikely to be effective if initiated after a short period following symptom onset. For accurate evaluation of the efficacy of an antiviral drug for COVID-19, antiviral treatment should be initiated before or soon after symptom onset in randomized clinical trials. One Sentence SummaryStudy design to evaluate antiviral effect.

5.
Preprint in English | bioRxiv | ID: ppbiorxiv-039925

ABSTRACT

Antiviral treatments targeting the emerging coronavirus disease 2019 (COVID-19) are urgently required. We screened a panel of already-approved drugs in a cell culture model of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and identified two new antiviral agents: the HIV protease inhibitor Nelfinavir and the anti-inflammatory drug Cepharanthine. In silico modeling shows Nelfinavir binds the SARS-CoV-2 main protease consistent with its inhibition of viral replication, whilst Cepharanthine inhibits viral attachment and entry into cells. Consistent with their different modes of action, in vitro assays highlight a synergistic effect of this combined treatment to limit SARS-CoV-2 proliferation. Mathematical modeling in vitro antiviral activity coupled with the known pharmacokinetics for these drugs predicts that Nelfinavir will facilitate viral clearance. Combining Nelfinavir/Cepharanthine enhanced their predicted efficacy to control viral proliferation, to ameliorate both the progression of disease and risk of transmission. In summary, this study identifies a new multidrug combination treatment for COVID-19.

6.
Preprint in English | medRxiv | ID: ppmedrxiv-20041970

ABSTRACT

The Diamond Princess (DP) cruise ship was put under quarantine offshore Yokohama, Japan, after a passenger who disembarked in Hong Kong was confirmed as a COVID-19 case. We performed whole genome sequencing of SARS-CoV-2 directly from PCR-positive clinical specimens and conducted a haplotype network analysis of the outbreak. All tested isolates exhibited a transversion at G11083T, suggesting that SARS-CoV-2 dissemination on the DP originated from a single introduction event before the quarantine started. Although further spreading might have been prevented by quarantine, some progeny clusters were linked to transmission through mass-gathering events in the recreational areas and direct transmission among passengers who shared cabins during the quarantine. This study demonstrates the usefulness of haplotype network analysis in identifying potential infection routes. One Sentence SummaryGenome-based tracing of SARS-CoV-2 infections among passengers and crews in Diamond Princess cruise ship during the quarantine

7.
Preprint in English | medRxiv | ID: ppmedrxiv-20029272

ABSTRACT

ObjectiveTo identify common features of cases with novel coronavirus disease (COVID-19) so as to better understand what factors promote secondary transmission including superspreading events. MethodsA total of 110 cases were examined among eleven clusters and sporadic cases, and investigated who acquired infection from whom. The clusters included four in Tokyo and one each in Aichi, Fukuoka, Hokkaido, Ishikawa, Kanagawa and Wakayama prefectures. The number of secondary cases generated by each primary case was calculated using contact tracing data. ResultsOf the 110 cases examined, 27 (24.6%) were primary cases who generated secondary cases. The odds that a primary case transmitted COVID-19 in a closed environment was 18.7 times greater compared to an open-air environment (95% confidence interval [CI]: 6.0, 57.9). ConclusionsIt is plausible that closed environments contribute to secondary transmission of COVID-19 and promote superspreading events. Our findings are also consistent with the declining incidence of COVID-19 cases in China, as gathering in closed environments was prohibited in the wake of the rapid spread of the disease.

8.
Intervirology ; 58(3): 139-42, 2015.
Article in English | MEDLINE | ID: mdl-25925280

ABSTRACT

Ferret hepatitis E virus (HEV), a novel hepatitis E-like virus, has been identified in ferrets in the Netherlands, Japan, and the US. To determine whether ferret HEV transmits to other animals, we inoculated laboratory rats (Wistar), nude rats (Long-Evans-rnu/rnu), and cynomolgus monkeys with ferret HEV (F4351) by intravenous injection. None of the animals demonstrated a positive sign for virus replication, indicating that rats and monkeys are not susceptible to ferret HEV.


Subject(s)
Disease Susceptibility/veterinary , Ferrets , Hepatitis E virus/immunology , Hepatitis E virus/physiology , Hepatitis E/veterinary , Monkey Diseases/virology , Rodent Diseases/virology , Animals , Hepatitis Antibodies/blood , Hepatitis E/transmission , Hepatitis E/virology , Macaca fascicularis , RNA, Viral , Rats , Rats, Long-Evans , Rats, Wistar , Virus Replication
9.
J Gen Virol ; 96(Pt 6): 1320-1327, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25634930

ABSTRACT

Rat hepatitis E virus (HEV) is related to human HEV and has been detected in wild rats worldwide. Here, the complete genome of rat HEV strain R63/DEU/2009 was cloned downstream of the T7 RNA polymerase promoter and capped genomic RNA generated by in vitro transcription was injected into nude rats. Rat HEV RNA could be detected in serum and faeces of rats injected intrahepatically, but not in those injected intravenously. Rat HEV RNA-positive faecal suspension was intravenously inoculated into nude rats and Wistar rats leading to rat HEV RNA detection in serum and faeces of nude rats, and to seroconversion in Wistar rats. In addition, rat HEV was isolated in PLC/PRF/5 cells from the rat HEV RNA-positive faecal suspension of nude rats and then passaged. The cell culture supernatant was infectious for nude rats. Genome analysis identified nine point mutations of the cell-culture-passaged virus in comparison with the originally cloned rat HEV genome. The results indicated that infectious rat HEV could be generated from the cDNA clone. As rats are widely used and well-characterized laboratory animals, studies on genetically engineered rat HEV may provide novel insights into organ tropism, replication and excretion kinetics as well as immunological changes induced by hepeviruses.


Subject(s)
DNA, Complementary/genetics , DNA, Viral/genetics , Hepatitis E virus/genetics , Hepatitis E virus/physiology , RNA, Viral/genetics , Animals , Cloning, Molecular/methods , Feces/virology , Female , Injections, Intravenous , Male , RNA, Viral/biosynthesis , Rats, Nude , Rats, Wistar , Serum/virology , Transcription, Genetic , Virology/methods
10.
Jpn J Infect Dis ; 68(1): 60-2, 2015.
Article in English | MEDLINE | ID: mdl-25420653

ABSTRACT

We examined 85 fecal samples from pet ferrets in 10 animal hospitals in Japan for the detection of ferret hepatitis E virus (HEV) RNA. We found that 6 (7.1%) of the samples were positive for ferret HEV RNA. Phylogenetic analysis based on the partial ORF1 indicated that these ferret HEV strains were clearly separated from the Netherlands strains and were divided into 2 distinct clusters. These results suggest that ferret HEV is genetically diverse, and since ferrets are not indigenous to Japan, ferret HEV has been introduced into Japan through importation.


Subject(s)
Hepatitis E virus/isolation & purification , Hepatitis E/veterinary , Animals , Cluster Analysis , Feces/virology , Female , Ferrets , Genetic Variation , Genotype , Hepatitis E/epidemiology , Hepatitis E/virology , Hospitals, Animal , Japan/epidemiology , Male , Molecular Epidemiology , Molecular Sequence Data , Phylogeny , RNA, Viral/genetics , RNA, Viral/isolation & purification , Sequence Analysis, DNA , Sequence Homology
11.
Emerg Infect Dis ; 20(4): 709-12, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24655541

ABSTRACT

The complete genome of hepatitis E virus (HEV) from laboratory ferrets imported from the United States was identified. This virus shared only 82.4%-82.5% nt sequence identities with strains from the Netherlands, which indicated that the ferret HEV genome is genetically diverse. Some laboratory ferrets were contaminated with HEV.


Subject(s)
Ferrets/virology , Genome, Viral , Hepatitis E virus/genetics , Animals , Genetic Variation , Hepatitis E/virology , Netherlands , Phylogeny , Sequence Analysis, DNA/methods , United States
13.
Emerg Infect Dis ; 19(1): 115-8, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23260149

ABSTRACT

We amplified the complete genome of the rat hepatitis E virus (HEV) Vietnam strain (V-105) and analyzed the nucleotide and amino acid sequences. The entire genome of V-105 shared only 76.8%-76.9% nucleotide sequence identities with rat HEV strains from Germany, which suggests that V-105 is a new genotype of rat HEV.


Subject(s)
Animals, Wild/virology , Genome, Viral , Hepatitis E virus/genetics , Hepatitis E/virology , RNA, Viral/genetics , Rats/virology , Animals , Base Sequence , DNA Primers , Genotype , Hepatitis E virus/classification , Hepatitis E virus/isolation & purification , Molecular Sequence Data , Molecular Typing , Phylogeny , RNA, Viral/classification , RNA, Viral/isolation & purification , Rats, Wistar , Sequence Homology, Nucleic Acid , Vietnam
SELECTION OF CITATIONS
SEARCH DETAIL
...