Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 13(12): e0208909, 2018.
Article in English | MEDLINE | ID: mdl-30532248

ABSTRACT

Imaging was conducted using an electron tracking-Compton camera (ETCC), which measures γ-rays with energies in the range of 200-900 keV from 95mTc. 95mTc was produced by the 95Mo(p, n)95mTc reaction on a 95Mo-enriched target. A method for recycling 95Mo-enriched molybdenum trioxide was employed, and the recycled yield of 95Mo was 70%-90%. Images were obtained with the gate of three energies. The results showed that the spatial resolution increases with increasing γ-ray energy, and suggested that the ETCC with high-energy γ-ray emitters such as 95mTc is useful for the medical imaging of deep tissue and organs in the human body.


Subject(s)
Diagnostic Imaging/methods , Gamma Cameras , Phantoms, Imaging/trends , Technetium/chemistry , Algorithms , Diagnostic Imaging/trends , Electrons , Gamma Rays , Humans , Molybdenum/chemistry , Monte Carlo Method , Oxides/chemistry , Photons , Radioisotopes/chemistry , Scattering, Radiation
2.
J Phys Condens Matter ; 28(32): 325901, 2016 08 17.
Article in English | MEDLINE | ID: mdl-27319289

ABSTRACT

Single crystals of magnesium aluminate spinel (MgAl2O4) with (1 0 0) or (1 1 0) orientations and cerium dioxide or ceria (CeO2) were irradiated by 1.0 MeV and 2.5 MeV electrons in a high-fluence range. Point-defect production was studied by off-line UV-visible optical spectroscopy after irradiation. For spinel, regardless of both crystal orientation and electron energy, two characteristic broad bands centered at photon energies of 5.4 eV and 4.9 eV were assigned to F and F(+) centers (neutral and singly ionized oxygen vacancies), respectively, on the basis of available literature data. No clear differences in color-center formation were observed for the two crystal orientations. Using calculations from displacement cross sections by elastic collisions, these results are consistent with a very large threshold displacement energy (200 eV) for oxygen atoms at room temperature. A third very broad band centered at 3.7 eV might be attributed either to an oxygen hole center (V-type center) or an F2 dimer center (oxygen di-vacancy). The onset of recovery of these color centers took place at 200 °C with almost full bleaching at 600 °C. Activation energies (~0.3-0.4 eV) for defect recovery were deduced from the isochronal annealing data by using a first-order kinetics analysis. For ceria, a sub-band-gap absorption feature, which peaked at ~3.1 eV, was recorded for 2.5 MeV electron irradiation only. Assuming a ballistic process, we suggest that the latter defect might result from cerium atom displacement on the basis of computed cross sections.

SELECTION OF CITATIONS
SEARCH DETAIL
...