Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
Nanoscale Horiz ; 9(7): 1128-1136, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38780444

ABSTRACT

We report a unique bio-catalytic nanoparticle shaping (BNS) method for preparing a variety of mesoscopic particles by a facile process. For example, the BNS method affords mesoscopic QD assembly dispersions. Large-size sedimentations (>1 µm) of QDs are first formed using oligo-L-lysine linkers. These then undergo controlled enzymatic cleavage of the linkers using trypsin, which surprisingly leads to mesoscopic particles about 84 nm in size with a narrow size distribution. A detailed mechanism of the BNS method is investigated using tetrakis(4-carboxyphenyl)porphyrin (TCPP), instead of QDs, as a probe molecule. Interestingly, the BNS method can also be applied to other combinations of enzymes and enzymatically degradable linkers, such as hyaluronidase with hyaluronan. As a potential application, the mesoscopic particles of QDs and oligo-lysine exhibit their ability to act as a drug delivery carrier originating from the features of both QDs and oligo-lysine. The BNS method demonstrates the universality and versatility of preparing mesoscopic particles and opens new doors for studying QD assemblies and molecular-based mesoscopic particles.

2.
J Am Chem Soc ; 145(36): 19953-19960, 2023 Sep 13.
Article in English | MEDLINE | ID: mdl-37584454

ABSTRACT

Dynamic behavior of intermediate adsorbates, such as diffusion, spillover, and reverse spillover, has a strong influence on the catalytic performance in oxide-supported metal catalysts. However, it is challenging to elucidate how the intermediate adsorbates move on the catalyst surface and find active sites to give the corresponding products. In this study, the effect of the dynamic behavior of methoxy intermediate on methanol decomposition on a Pt/TiO2(110) surface has been clarified by combination of scanning tunneling microscopy (STM), temperature-programmed desorption (TPD), and density functional theory (DFT) calculations. The methoxy intermediates were formed by the dissociative adsorption of methanol molecules on Pt nanoparticles at room temperature followed by spillover to the TiO2(110) support surface. TPD results showed that the methoxy intermediates were thermally decomposed at >350 K on the Pt sites to produce CO (dehydrogenation) and CH4 (C-O bond scission). A decrease of the Pt nanoparticle density lowered the activity for the decomposition reaction and increased the selectivity toward CH4, which indicates that the reaction is controlled by diffusion and reverse spillover of the methoxy intermediates. Time-lapse STM imaging and DFT calculations revealed that the methoxy intermediates migrate on the five-fold coordinated Ti (Ti5c) sites along the [001] or [11¯0] direction with the aid of hydrogen adatoms bonded to the bridging oxygens (Obr) and can move over the entire surface to seek and find active Pt sites. This work offers an in-depth understanding of the important role of intermediate adsorbate migration in the control of the catalytic performance in oxide-supported metal catalysts.

3.
JACS Au ; 3(3): 823-833, 2023 Mar 27.
Article in English | MEDLINE | ID: mdl-37006766

ABSTRACT

Numerous biomimetic molecular catalysts inspired by methane monooxygenases (MMOs) that utilize iron or copper-oxo species as key intermediates have been developed. However, the catalytic methane oxidation activities of biomimetic molecule-based catalysts are still much lower than those of MMOs. Herein, we report that the close stacking of a µ-nitrido-bridged iron phthalocyanine dimer onto a graphite surface is effective in achieving high catalytic methane oxidation activity. The activity is almost 50 times higher than that of other potent molecule-based methane oxidation catalysts and comparable to those of certain MMOs, in an aqueous solution containing H2O2. It was demonstrated that the graphite-supported µ-nitrido-bridged iron phthalocyanine dimer oxidized methane, even at room temperature. Electrochemical investigation and density functional theory calculations suggested that the stacking of the catalyst onto graphite induced partial charge transfer from the reactive oxo species of the µ-nitrido-bridged iron phthalocyanine dimer and significantly lowered the singly occupied molecular orbital level, thereby facilitating electron transfer from methane to the catalyst in the proton-coupled electron-transfer process. The cofacially stacked structure is advantageous for stable adhesion of the catalyst molecule on the graphite surface in the oxidative reaction condition and for preventing decreases in the oxo-basicity and generation rate of the terminal iron-oxo species. We also demonstrated that the graphite-supported catalyst exhibited appreciably enhanced activity under photoirradiation owing to the photothermal effect.

4.
J Am Chem Soc ; 144(35): 15944-15953, 2022 Sep 07.
Article in English | MEDLINE | ID: mdl-35984749

ABSTRACT

Propane dehydrogenation has been a promising propylene production process that can compensate for the increasing global demand for propylene. However, Pt-based catalysts with high stability at ≥600 °C have barely been reported because the catalysts typically result in short catalyst life owing to side reactions and coke formation. Herein, we report a new class of heterogeneous catalysts using high-entropy intermetallics (HEIs). Pt-Pt ensembles, which cause side reactions, are entirely diluted by the component inert metals in PtGe-type HEIs. The resultant HEI (PtCoCu) (GeGaSn)/Ca-SiO2 exhibited an outstandingly high catalytic stability, even at 600 °C (kd-1 = τ = 4146 h = 173 d), and almost no deactivation of the catalyst was observed for 2 months for the first time. Detailed experimental studies and theoretical calculations demonstrated that the combination of the site-isolation and entropy effects upon multi-metallization of PtGe drastically enhanced the desorption of propylene and the thermal stability, eventually suppressing the side reactions even at high reaction temperatures.

5.
J Am Chem Soc ; 144(31): 14140-14149, 2022 Aug 10.
Article in English | MEDLINE | ID: mdl-35862699

ABSTRACT

Using nonthermal plasma (NTP) to promote CO2 hydrogenation is one of the most promising approaches that overcome the limitations of conventional thermal catalysis. However, the catalytic surface reaction dynamics of NTP-activated species are still under debate. The NTP-activated CO2 hydrogenation was investigated in Pd2Ga/SiO2 alloy catalysts and compared to thermal conditions. Although both thermal and NTP conditions showed close to 100% CO selectivity, it is worth emphasizing that when activated by NTP, CO2 conversion not only improves more than 2-fold under thermal conditions but also breaks the thermodynamic equilibrium limitation. Mechanistic insights into NTP-activated species and alloy catalyst surface were investigated by using in situ transmission infrared spectroscopy, where catalyst surface species were identified during NTP irradiation. Moreover, in in situ X-ray absorption fine-structure analysis under reaction conditions, the catalyst under NTP conditions not only did not undergo restructuring affecting CO2 hydrogenation but also could clearly rule out catalyst activation by heating. In situ characterizations of the catalysts during CO2 hydrogenation depict that vibrationally excited CO2 significantly enhances the catalytic reaction. The agreement of approaches combining experimental studies and density functional theory (DFT) calculations substantiates that vibrationally excited CO2 reacts directly with hydrogen adsorbed on Pd sites while accelerating formate formation due to neighboring Ga sites. Moreover, DFT analysis deduces the key reaction pathway that the decomposition of monodentate formate is promoted by plasma-activated hydrogen species. This work enables the high designability of CO2 hydrogenation catalysts toward value-added chemicals based on the electrification of chemical processes via NTP.

6.
J Synchrotron Radiat ; 27(Pt 6): 1618-1625, 2020 Nov 01.
Article in English | MEDLINE | ID: mdl-33147187

ABSTRACT

A bent crystal Laue analyser (BCLA) is an X-ray energy analyser used for fluorescence X-ray absorption fine-structure (XAFS) spectroscopy to separate the fluorescence X-ray emission line of a target atom from the elastic scattering X-rays and other fluorescence emission lines. Here, the feasibility of the BCLA for total reflection fluorescence XAFS (TRF-XAFS), which has a long X-ray footprint on the substrate surface owing to grazing incidence, was tested. The focal line of the BCLA was adjusted on the X-ray footprint and the XAFS signal for one monolayer of Pt deposited on a 60 nm Au film with high sensitivity was obtained. Although range-extended XAFS was expected by the rejection of Au fluorescence arising from the Au substrate, a small glitch was found in the Au L3 edge because of the sudden change of the complex refraction index of the Au substrate at the Au edge. This abnormal spectrum feature can be removed by reflectivity correction using Au foil absorption data. BCLA combined with TRF-XAFS spectroscopy (BCLA + TRF-XAFS) is a new technique for the in situ surface analysis of highly dispersed systems even in the presence of a liquid overlayer.

7.
Phys Chem Chem Phys ; 22(5): 2615-2621, 2020 Feb 07.
Article in English | MEDLINE | ID: mdl-30989154

ABSTRACT

Understanding the excited state of photocatalysts is significant to improve their activity for water splitting reaction. X-ray absorption fine structure (XAFS) spectroscopy in X-ray free electron lasers (XFEL) is a powerful method to address dynamic changes in electronic states and structures of photocatalysts in the excited state in ultrafast short time scales. The ultrafast atomic-scale local structural change in photoexcited WO3 was observed by W L1 edge XAFS spectroscopy using an XFEL. An anisotropic local distortion around the W atom could reproduce well the spectral features at a delay time of 100 ps after photoexcitation based on full potential multiple scattering calculations. The distortion involved the movement of W to shrink the shortest W-O bonds and elongate the longest one. The movement of the W atom could be explained by the filling of the dxy and dzx orbitals, which were originally located at the bottom of the conduction band with photoexcited electrons.

8.
Chem Rec ; 19(7): 1157-1165, 2019 Jul.
Article in English | MEDLINE | ID: mdl-30088337

ABSTRACT

Surface fluorescence X-ray absorption fine structure (XAFS) spectroscopy using a Laue-type monochromator has been developed to acquire structural information about metals with a very low concentrate on a flat highly oriented pyrolytic graphite (HOPG) surface in the presence of electrolytes. Generally, surface fluorescence XAFS spectroscopy is hindered by strong scattering from the bulk, which often chokes the pulse counting detector. In this work, we show that a bent crystal Laue analyzer (BCLA) can efficiently remove the scattered X-rays from the bulk even in the presence of solution. We applied the technique to submonolayer (∼1014  atoms cm-2 ) Pt on HOPG and successfully obtained high signal/noise in situ XAFS data in combination with back-illuminated fluorescence XAFS (BI-FXAFS) spectroscopy. This technique allows in situ XAFS measurements of flat electrode surfaces to be performed in the presence of electrolytes.

9.
Chem Rec ; 19(7): 1244-1255, 2019 Jul.
Article in English | MEDLINE | ID: mdl-30203911

ABSTRACT

Precise control of the three-dimensional (3D) structure of highly dispersed metal species such as metal complexes and clusters attached to an oxide surface has been important for the development of next-generation high-performance heterogeneous catalysts. However, this is not easily achieved for the following reasons. (1) Metal species are easily aggregated on an oxide surface, which makes it difficult to control their size and orientation definitely. (2) Determination of the 3D structure of the metal species on an oxide powder surface is hardly possible. To overcome these difficulties, we have developed the premodified surface method, where prior to metal deposition, the oxide surface is premodified with a functional organic molecule that can strongly coordinate to a metal atom. This method has successfully provided a single metal dispersion on an oxide single-crystal surface with the 3D structure precisely determined by polarization-dependent total reflection fluorescence X-ray absorption fine structure (PTRF-XAFS). Here we describe our recent results on ultra-high dispersions of various metal atoms on TiO2 (110) surfaces premodified with mercapto compounds, and show the possibility of fine tuning and orientation control of the surface metal 3D structures.

10.
Chem Commun (Camb) ; 53(53): 7314-7317, 2017 Jun 29.
Article in English | MEDLINE | ID: mdl-28480915

ABSTRACT

Ultrafast excitation of photocatalytically active BiVO4 was characterized by femto- and picosecond transient X-ray absorption fine structure spectroscopy. An initial photoexcited state (≪500 fs) changed to a metastable state accompanied by a structural change with a time constant of ∼14 ps. The structural change might stabilize holes on oxygen atoms since the interaction between Bi and O increases.

11.
Angew Chem Int Ed Engl ; 55(4): 1364-7, 2016 Jan 22.
Article in English | MEDLINE | ID: mdl-26663199

ABSTRACT

The dynamics of the local electronic and geometric structures of WO3 following photoexcitation were studied by femtosecond time-resolved X-ray absorption fine structure (XAFS) spectroscopy using an X-ray free electron laser (XFEL). We found that the electronic state was the first to change followed by the local structure, which was affected within 200 ps of photoexcitation.

12.
Rev Sci Instrum ; 86(3): 034102, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25832248

ABSTRACT

We present the design and performance of a high-temperature in situ cell with a large solid angle for fluorescence X-ray absorption fine structure (XAFS) spectra. The cell has a large fluorescence XAFS window (116 mm(ϕ)) near the sample in the cell, realizing a large half-cone angle of 56°. We use a small heater (25 × 35 mm(2)) to heat the sample locally to 873 K. We measured a Pt-SnO2 thin layer on a Si substrate at reaction conditions having a high activity. In situ measurement enables the analysis of the difference XAFS spectra between before and during the reaction to reveal the structure change during the operation.


Subject(s)
Spectrometry, X-Ray Emission/instrumentation , Equipment Design , Fluorescence , Fourier Analysis , Temperature
13.
Phys Chem Chem Phys ; 17(14): 8638-41, 2015 Apr 14.
Article in English | MEDLINE | ID: mdl-25759865

ABSTRACT

A dinuclear copper(II) complex of 3,5-diamino-1,2,4-triazole is one of the highly active copper-based catalysts for the oxygen reduction reaction (ORR) in basic solutions. Our in situ X-ray absorption near edge structure measurements revealed that deprotonation of the triazole ligand might cause coordination geometrical changes, resulting in the enhancement of the ORR activity.

14.
Rev Sci Instrum ; 85(8): 084104, 2014 Aug.
Article in English | MEDLINE | ID: mdl-25173284

ABSTRACT

A new spectroelectrochemical cell to investigate the structure of Pt/Au nanoclusters using Pt and Au K-edge X-ray absorption fine structure (XAFS) measurements under the electrochemical conditions is developed. K-edge XAFS measurements for Pt and Au require a sample as thick as 1-2 cm, which prevents homogeneous potential distribution. We can measure in situ Pt and Au K-edge XAFS spectra and determine reasonable electrochemical surface areas using our developed spectroelectrochemical cell. This work provides a new approach to analyze Pt/Au core-shell nanoclusters. The new cell is designed to be applied to both spectra with high absorption-edge energies such as the K-edge of Pt and Au and those with low absorption-edge energy such as Pt L-edge.

15.
Phys Chem Chem Phys ; 16(27): 13748-54, 2014 Jul 21.
Article in English | MEDLINE | ID: mdl-24788597

ABSTRACT

We measured the in situ polarization-dependent X-ray absorption fine structure of platinum nanoparticles (PtNPs) deposited on a flat highly oriented pyrolytic graphite (HOPG) substrate under electrochemical conditions using a back-side illumination method. In this method, the thin HOPG substrate with PtNPs deposited on one side was used as a window for incident and fluorescent X-rays, as well as an electrode. A bent crystal Laue analyzer (BCLA) was applied to the extraction of the Pt Lα fluorescent X-ray signals from strong scattered X-rays. Pt L3 edge XAFS spectra were observed for various electrode potentials and polarization directions.

16.
Faraday Discuss ; 162: 165-77, 2013.
Article in English | MEDLINE | ID: mdl-24015582

ABSTRACT

Three-dimensional Au structures on bare and organic-compound-modified TiO2(110) surfaces were interrogated by Au L3-edge polarization dependent total reflection fluorescence X-ray absorption fine structure (PTRF-XAFS) spectroscopy. On the bare TiO2(110) surface, icosahedral Au55 nanoclusters were the main product found. When the surfaces were modified with ortho or meso mercaptobenzoic acid (o-MBA or m-MBA), Au was atomically dispersed. Sulfur atoms in the o- and m- MBA formed strong covalent bonds with Au to produce stable Au-MBA (o- and m- forms) surface complexes. On the other hand, only oxygen atoms on the surface did not make a strong enough interaction to stabilize the Au species. We discuss how the Au species formed on the modified TiO2(110) surface and the possibility to control the Au structure by the surface modification method.

17.
Chem Commun (Camb) ; 49(71): 7848-50, 2013 Sep 14.
Article in English | MEDLINE | ID: mdl-23892561

ABSTRACT

The Mn-oxide/Nb:SrTiO3 photoelectrode for oxygen evolution reaction was investigated by in situ Mn K-edge XAFS spectroscopy under UV irradiation. The oxidization of the Mn oxide was observed via photoexcited carrier transfer, which results in the positive potential shift of the Mn oxide cocatalyst toward oxygen evolution reaction.

18.
Phys Chem Chem Phys ; 15(33): 14080-8, 2013 Sep 07.
Article in English | MEDLINE | ID: mdl-23860733

ABSTRACT

Three-dimensional structures of vacuum-deposited Cu species formed on TiO2(110) surfaces premodified with three mercaptobenzoic acid (MBA) isomers were studied using polarization-dependent total reflection fluorescence X-ray absorption fine structure (PTRF-XAFS). We explored the possibility of fine tuning and orientation control of the surface Cu structures, including their coordination and configuration against the surface, according to the different mercapto group positions of the three MBA isomers (o-, m-, and p-MBA). Almost linear S-Cu-O (lattice O of TiO2) surface compounds were formed on the three MBA-modified TiO2(110) surfaces; however, the orientation of the Cu species on the o- and m-MBA-modified TiO2(110) surfaces (40-45° inclined from the surface normal) was different from that on the p-MBA-modified TiO2(110) surface (60° from the surface normal). This work suggests that the selection of a different MBA isomer for premodification of a single crystal TiO2(110) surface enables fine tuning and orientation control of surface Cu complexes.

19.
J Synchrotron Radiat ; 19(Pt 2): 205-9, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22338680

ABSTRACT

Structural changes in Ni(2)P/MCM-41 were followed by quick extended X-ray absorption fine structure (QEXAFS) and were directly related to changes in X-ray absorption near-edge structure (XANES) which had been used earlier for the study of the active catalyst phase. An equation is proposed to correct the transient QEXAFS spectra up to second-order in time to remove spectral distortions induced by structural changes occurring during measurements. A good correlation between the corrected QEXAFS and the XANES spectral changes was found, giving support to the conclusions derived from the XANES in the previous work, namely that the formation of a Ni-S bond in a surface NiPS phase is involved in the active site for the hydrodesulfurization reaction.

20.
Adv Mater ; 24(2): 268-72, 2012 Jan 10.
Article in English | MEDLINE | ID: mdl-21972009

ABSTRACT

Two examples of confined molecular catalysts are presented. PtCl(4) (2-) complexes are attached to a thiol-terminated monolayer by ligand exchange of Cl(-) with a thiolate group and incorporated in a multilayer of viologen moieties by ion exchange. All Cl(-) ligands are replaced by OH(-) or H(2) O before HER takes place. Ex situ and in situ XAFS measurements confirm that the Pt complexes accelerate HER without being converted into Pt particles.


Subject(s)
Carbon/chemistry , Silicon/chemistry , Catalysis , Coordination Complexes/chemistry , Electrodes , Photoelectron Spectroscopy , Platinum/chemistry , Semiconductors , Sulfhydryl Compounds/chemistry , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...