Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
eNeuro ; 9(3)2022.
Article in English | MEDLINE | ID: mdl-35551094

ABSTRACT

The activity of primary auditory cortex (A1) neurons is modulated not only by sensory inputs but also by other task-related variables in associative learning. However, it is unclear how A1 neural activity changes dynamically in response to these variables during the learning process of associative memory tasks. Therefore, we developed an associative memory task using auditory stimuli in rats. In this task, rats were required to associate tone frequencies (high and low) with a choice of ports (right or left) to obtain a reward. The activity of A1 neurons in the rats during the learning process of the task was recorded. A1 neurons increased their firing rates either when the rats were presented with a high or low tone (frequency-selective cells) before they chose either the left or right port (choice-direction cells), or when they received a reward after choosing either the left or right port (reward-direction cells). Furthermore, the proportion of frequency-selective cells and reward-direction cells increased with task acquisition and reached the maximum level in the last stage of learning. These results suggest that A1 neurons have task- and learning-dependent selectivity toward sensory input and reward when auditory tones and behavioral responses are gradually associated during task training. This selective activity of A1 neurons may facilitate the formation of associations, leading to the consolidation of associative memory.


Subject(s)
Auditory Cortex , Acoustic Stimulation , Animals , Auditory Cortex/physiology , Conditioning, Classical/physiology , Learning/physiology , Neurons/physiology , Rats , Reward
2.
Front Syst Neurosci ; 15: 718619, 2021.
Article in English | MEDLINE | ID: mdl-34552474

ABSTRACT

The hippocampus is crucial for forming associations between environmental stimuli. However, it is unclear how neural activities of hippocampal neurons dynamically change during the learning process. To address this question, we developed an associative memory task for rats with auditory stimuli. In this task, the rats were required to associate tone pitches (high and low) and ports (right and left) to obtain a reward. We recorded the firing activity of neurons in rats hippocampal CA1 during the learning process of the task. As a result, many hippocampal CA1 neurons increased their firing rates when the rats received a reward after choosing either the left or right port. We referred to these cells as "reward-direction cells." Furthermore, the proportion of the reward-direction cells increased in the middle-stage of learning but decreased after the completion of learning. This result suggests that the activity of reward-direction cells might serve as "positive feedback" signal that facilitates the formation of associations between tone pitches and port choice.

3.
Neurosci Res ; 153: 22-26, 2020 Apr.
Article in English | MEDLINE | ID: mdl-30940458

ABSTRACT

In this update article, we focus on "memory engrams", which are traces of long-term memory in the brain, and emphasizes that they are not static but dynamic. We first introduce the major findings in neuroscience and psychology reporting that memory engrams are sometimes diffuse and unstable, indicating that they are dynamically modified processes of consolidation and reconsolidation. Second, we introduce and discuss the concepts of cell assembly and engram cell, the former has been investigated by psychological experiments and behavioral electrophysiology and the latter is defined by recent combination of activity-dependent cell labelling with optogenetics to show causal relationships between cell population activity and behavioral changes. Third, we discuss the similarities and differences between the cell assembly and engram cell concepts to reveal the dynamics of memory engrams. We also discuss the advantages and problems of live-cell imaging, which has recently been developed to visualize multineuronal activities. The last section suggests the experimental strategy and background assumptions for future research of memory engrams. The former encourages recording of cell assemblies from different brain regions during memory consolidation-reconsolidation processes, while the latter emphasizes the multipotentiality of neurons and regions that contribute to dynamics of memory engrams in the working brain.


Subject(s)
Brain/physiology , Memory Consolidation/physiology , Neurons/physiology , Animals , Humans , Memory, Long-Term/physiology , Mental Recall/physiology , Optogenetics
SELECTION OF CITATIONS
SEARCH DETAIL
...