Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Neurochem Int ; 157: 105345, 2022 07.
Article in English | MEDLINE | ID: mdl-35500664

ABSTRACT

Protein fibrillation and human neurodegenerative diseases, with a profound underlying connection suggested between them, have been the subject of intense investigations in the medical, biophysical and bio-engineering sciences. For gaining the molecular mechanistic insights into such connection, i.e., the cause and effect, atomic-resolution molecular structure information especially on the initial oligomeric states is of paramount importance, not only that on the mature amyloid fibrils. α-Synuclein (αSyn) and its amyloid fibril has a direct relevance to the Parkinson's disease and other synucleinopathies, but what triggers the fibrillation is still not entirely clear. We here describe the liquid-liquid phase separation (LLPS) of αSyn and investigate its conformational evolution from its monomeric state into oligomer state within the early-stage of the phase-separated droplets, mainly using solution and magic-angle spinning (MAS) solid-state nuclear magnetic resonance (NMR) spectroscopies, aided with optical and fluorescent microscopies and CD spectroscopy. Based on the analysis of the intricately broadened shapes of the MAS NMR peaks observed for isotopically 13C-labeled His-50 of αSyn, we show that the distribution of the αSyn conformation is skewed from the initial completely random state to a loose ß-rich ensembles at/around His-50 as early as day-3 (d3) within the droplet. This intra-droplet loose ß-rich assembly showed a very slow progression until d8, and eventually maturated into ThT-positive, long and unbranched amyloid fibrils after 8 weeks. The obtained information on the evolution of the distribution of the conformation ensemble is unique, and difficult to obtain with X-ray crystallography and cryo-electron microscopy (cryoEM). In particular, the sensitivity-enhanced MAS NMR based on the low-temperature dynamic nuclear polarization (DNP) technique was proven to be a key tool in characterizing the conformational ensemble with dilute protein samples such as the liquid-phase droplets.


Subject(s)
Parkinson Disease , alpha-Synuclein , Amyloid/chemistry , Cryoelectron Microscopy , Humans , Magnetic Resonance Spectroscopy/methods , Parkinson Disease/metabolism , alpha-Synuclein/metabolism
2.
J Magn Reson ; 322: 106878, 2021 01.
Article in English | MEDLINE | ID: mdl-33285399

ABSTRACT

13C-direct detection NMR has several advantages compared to proton detection, including a tendency to relax slower and wider chemical shift range. However, the sensitivity of 13C-direct detection is much lower than that of proton detection because of its lower gyromagnetic ratio. In addition, a virtual decoupling procedure is often performed to remove peak splitting in the 13C-direct detection axis, which further reduces the sensitivity to 1/√2. In this study, to enhance the sensitivity of 13C-direct detection experiments, we developed a HCACO-type new pulse sequence in which anti-phase (AP) and in-phase (IP) signals are acquired sequentially in a single scan. The developed experiment was tested on an amino acid (valine) and two proteins (streptococcal protein G B1 domain (GB1) and α-synuclein). The AP and IP spectra were successfully obtained in all cases. Using these spectra, IPAP virtual decoupling was performed, and peak splitting was successfully removed. The sensitivity of the experiment was increased by 1.43, 1.26 and 1.26 times for valine, GB1 and α-synuclein, respectively, compared to the conventional HCACO experiment. In addition, we developed another HCACO-type pulse sequence, where AP and IP signals are simultaneously acquired in a single FID. The sensitivity of the experiment was increased by 1.40 and 1.35 times for valine and GB1, respectively. These methods are potentially applicable to other 13C-direct detection experiments that measure one-bond correlations and will further extend the utility of the 13C-direct detection method, especially for structural analyses of intrinsically disordered proteins.

SELECTION OF CITATIONS
SEARCH DETAIL
...