Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nutr Metab (Lond) ; 14: 59, 2017.
Article in English | MEDLINE | ID: mdl-28932254

ABSTRACT

BACKGROUND: Previously, we reported that a low-protein diet significantly reduced insulin secretion in response to feeding within 1 h in rats, suggesting that the insulinotropic effect of dietary protein plays an important role in maintaining normal insulin release. The current study aimed to elucidate whether deficiency of certain amino acids could diminish the insulinotropic activity and to investigate whether reduced insulin secretion in response to a low-protein diet is restored by supplementation with certain amino acids. METHODS: First, we fed male Wistar rats (5-6 rats per group) with diets deficient in every single amino acid or three branched-chain amino acids (BCAAs); within 1-2 h after the onset of feeding, we measured the plasma insulin levels by using an enzyme-linked immunosorbent assay (ELISA). As insulin secretion was reduced in BCAA-deficient groups, we fed low-protein diets supplemented with BCAAs to assess whether the reduced insulin secretion was restored. In addition, we treated the pancreatic beta cell line MIN6 with BCAAs to investigate the direct insulinotropic activity on beta cells. Lastly, we investigated the effect of the three BCAAs on sham-operated or vagotomized rats to assess involvement of the vagus nerve in restoration of the insulinotropic activity. RESULTS: Feeding a low-protein diet reduced essential amino acid concentrations in the plasma during an absorptive state, suggesting that reduced plasma amino acid levels can be an initial signal of protein deficiency. In normal rats, insulin secretion was reduced when leucine, valine, or three BCAAs were deficient. Insulin secretion was restored to normal levels by supplementation of the low-protein diet with three BCAAs, but not by supplementation with any single BCAA. In MIN6 cells, each BCAA alone stimulated insulin secretion but the three BCAAs did not show a synergistic stimulatory effect. The three BCAAs showed a synergistic stimulatory effect in sham-operated rats but failed to stimulate insulin secretion in vagotomized rats. CONCLUSIONS: Leucine and valine play a role in maintaining normal insulin release by directly stimulating beta cells, and supplementation with the three BCAAs is sufficient to compensate for the reduced insulinotropic activity of the low-protein diet, through the vagus nerve.

2.
Phytopathology ; 99(8): 951-6, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19594314

ABSTRACT

The influence of temperature and leaf wetness duration on infection of spring onion (Japanese bunching onion) leaves by Puccinia allii was examined in controlled-environment experiments. Leaves of potted spring onion plants (Allium fistulosum cv. Yoshikura) were inoculated with urediniospores and exposed to 6.5, 10, 15, 22, or 27 h of wetness at 5, 10, 15, 20, or 25 degrees C. The lesion that developed increased in density with increasing wetness duration. Relative infection was modeled as a function of both temperature and wetness duration using the modified version of Weibull's cumulative distribution function (R(2) = 0.9369). Infection occurred between 6.5 and 27 h of leaf wetness duration at 10, 15, 20, and 25 degrees C and between 10 and 27 h at 5 degrees C, and increased rapidly between 6.5 and 15 h of wetness at 10, 15, and 20 degrees C. At 25 degrees C, few uredinia developed regardless of the wetness duration. Parameter H, one of eight parameters used in the equation and which controls the asymmetry in the response curve, varied markedly according to the temperature, so that the model could be improved by representing H as a function of wetness duration (R(2) = 0.9501).


Subject(s)
Basidiomycota , Models, Biological , Onions/microbiology , Plant Leaves/microbiology , Temperature , Time Factors , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...