Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 12(1): 3734, 2022 03 08.
Article in English | MEDLINE | ID: mdl-35260628

ABSTRACT

Natural rubber of the Para rubber tree (Hevea brasiliensis) is synthesized as a result of prenyltransferase activity. The proteins HRT1, HRT2, and HRBP have been identified as candidate components of the rubber biosynthetic machinery. To clarify the contribution of these proteins to prenyltransferase activity, we established a cell-free translation system for nanodisc-based protein reconstitution and measured the enzyme activity of the protein-nanodisc complexes. Co-expression of HRT1 and HRBP in the presence of nanodiscs yielded marked polyisoprene synthesis activity. By contrast, neither HRT1, HRT2, or HRBP alone nor a complex of HRT2 and HRBP manifested such activity. Similar analysis of guayule (Parthenium argentatum) proteins revealed that three HRT1 homologs (PaCPT1-3) manifested prenyltransferase activity only when co-expressed with PaCBP, the homolog of HRBP. Our results thus indicate that two heterologous subunits form the core prenyltransferase of the rubber biosynthetic machinery. A recently developed structure modeling program predicted the structure of such heterodimer complexes including HRT1/HRBP and PaCPT2/PaCBP. HRT and PaCPT proteins were also found to possess affinity for a lipid membrane in the absence of HRBP or PaCBP, and structure modeling implicated an amphipathic α-helical domain of HRT1 and PaCPT2 in membrane binding of these proteins.


Subject(s)
Asteraceae , Dimethylallyltranstransferase , Hevea , Asteraceae/metabolism , Hevea/metabolism , Plant Proteins/metabolism , Rubber/metabolism
2.
Plant Physiol ; 187(2): 816-828, 2021 10 05.
Article in English | MEDLINE | ID: mdl-34608958

ABSTRACT

The rice (Oryza sativa) 2-oxoglutarate (2OG)/Fe(II)-dependent dioxygenase HIS1 mediates the catalytic inactivation of five distinct ß-triketone herbicides (bTHs). By assessing the effects of plant growth regulators on HIS1 enzyme function, we found that HIS1 mediates the hydroxylation of trinexapac-ethyl (TE) in the presence of Fe2+ and 2OG. TE blocks gibberellin biosynthesis, and we observed that its addition to culture medium induced growth retardation of rice seedlings in a concentration-dependent manner. Similar treatment with hydroxylated TE revealed that hydroxylation greatly attenuated the inhibitory effect of TE on plant growth. Forced expression of HIS1 in a rice his1 mutant also reduced its sensitivity to TE compared with that of the nontransformant. These results indicate that HIS1 metabolizes TE and thereby markedly reduces its ability to slow plant growth. Furthermore, analysis of five rice HIS1-like (HSL) proteins revealed that OsHSL2 and OsHSL4 also metabolize TE in vitro. HSLs from wheat (Triticum aestivum) and barley (Hordeum vulgare) also showed such activity. In contrast, OsHSL1, which shares the highest amino acid sequence identity with HIS1 and metabolizes the bTH tefuryltrione, did not manifest TE-metabolizing activity. Site-directed mutagenesis of OsHSL1 informed by structural models showed that substitution of three amino acids with the corresponding residues of HIS1 conferred TE-metabolizing activity similar to that of HIS1. Our results thus reveal a catalytic promiscuity of HIS1 and its related enzymes that support xenobiotic metabolism in plants.


Subject(s)
Cyclopropanes/metabolism , Dioxygenases/metabolism , Oryza/metabolism , Plant Proteins/metabolism , Quinones/metabolism , Xenobiotics/metabolism , Oryza/enzymology
SELECTION OF CITATIONS
SEARCH DETAIL
...