Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 130(15): 153402, 2023 Apr 14.
Article in English | MEDLINE | ID: mdl-37115891

ABSTRACT

We observe a weakly allowed optical transition of atomic ytterbium from the ground state to the metastable state 4f^{13}5d6s^{2} (J=2) for all five bosonic and two fermionic isotopes with resolved Zeeman and hyperfine structures. This inner-shell orbital transition has been proposed as a new frequency standard as well as a quantum sensor for new physics. We find magic wavelengths through the measurement of the scalar and tensor polarizabilities and reveal that the measured trap lifetime in a three-dimensional optical lattice is 1.9(1) s, which is crucial for precision measurements. We also determine the g factor by an interleaved measurement, consistent with our relativistic atomic calculation. This work opens the possibility of an optical lattice clock with improved stability and accuracy as well as novel approaches for physics beyond the standard model.

2.
Opt Express ; 29(5): 6927-6934, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33726203

ABSTRACT

High-power tunable lasers with good longitudinal and transverse modes are fundamental tools for exploring quantum physics. Here we report a high-power continuous-wave injection-locked titanium:sapphire laser with a low-loss cavity configuration, where only a laser crystal was installed in the laser cavity. Although the transverse mode was affected by a thermal lens formed in the laser crystal, the focal length of the thermal lens could be shifted via the temperature of the laser crystal holder or the pump power. As a result, we found a condition that 10 W single-frequency oscillation with a good transverse mode and a slope efficiency of 51% were achieved.

3.
Nat Commun ; 5: 4096, 2014 Jun 17.
Article in English | MEDLINE | ID: mdl-24934478

ABSTRACT

Unlike photons, which are conveniently handled by mirrors and optical fibres without loss of coherence, atoms lose their coherence via atom-atom and atom-wall interactions. This decoherence of atoms deteriorates the performance of atomic clocks and magnetometers, and also hinders their miniaturization. Here we report a novel platform for precision spectroscopy. Ultracold strontium atoms inside a kagome-lattice hollow-core photonic crystal fibre are transversely confined by an optical lattice to prevent atoms from interacting with the fibre wall. By confining at most one atom in each lattice site, to avoid atom-atom interactions and Doppler effect, a 7.8-kHz-wide spectrum is observed for the (1)S0-(3)P1(m=0) transition. Atoms singly trapped in a magic lattice in hollow-core photonic crystal fibres improve the optical depth while preserving atomic coherence time.

4.
Phys Rev Lett ; 104(1): 013602, 2010 Jan 08.
Article in English | MEDLINE | ID: mdl-20366363

ABSTRACT

We report successful manipulation of nonclassical atomic spin states. We apply an off-resonant noncircularly-polarized light pulse to a measurement-induced squeezed spin state of a cold atomic ensemble. By changing the pulse duration, we clearly observe a rotation of the anisotropic quantum-noise distribution in good contrast with the case of manipulation of a coherent spin state where the quantum-noise distribution is always isotropic. This is an important step for quantum state tomography, quantum swapping, and precision spectroscopic measurement.

5.
Phys Rev Lett ; 91(4): 040404, 2003 Jul 25.
Article in English | MEDLINE | ID: mdl-12906649

ABSTRACT

We report the observation of a Bose-Einstein condensation of ytterbium atoms by evaporative cooling in a novel crossed optical trap. Unlike the previously observed condensates, a ytterbium condensate is a two-electron system in a singlet state and has distinct features such as the extremely narrow intercombination transitions which are ideal for future optical frequency standard and the insensitivity to external magnetic field which is important for precision coherent atom optics, and the existence of the novel metastable triplet states generated by optical excitation from the singlet state.

SELECTION OF CITATIONS
SEARCH DETAIL
...