Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
J Hum Evol ; 155: 102982, 2021 06.
Article in English | MEDLINE | ID: mdl-33862402

ABSTRACT

The middle Miocene stem kenyapithecine Nacholapithecus kerioi (16-15 Ma; Nachola, Kenya) is represented by a large number of isolated fossil remains and one of the most complete skeletons in the hominoid fossil record (KNM-BG 35250). Multiple fieldwork seasons performed by Japanese-Kenyan teams during the last part of the 20th century resulted in the discovery of a large sample of Nacholapithecus fossils. Here, we describe the new femoral remains of Nacholapithecus. In well-preserved specimens, we evaluate sex differences and within-species variation using both qualitative and quantitative traits. We use these data to determine whether these specimens are morphologically similar to the species holotype KNM-BG 35250 (which shows some plastic deformation) and to compare Nacholapithecus with other Miocene hominoids and extant anthropoids to evaluate the distinctiveness of its femur. The new fossil evidence reaffirms previously reported descriptions of some distal femoral traits, namely the morphology of the patellar groove. However, results also show that relative femoral head size in Nacholapithecus is smaller, relative neck length is longer, and neck-shaft angle is lower than previously reported for KNM-BG 35250. These traits have a strong functional signal related to the hip joint kinematics, suggesting that the morphology of the proximal femur in Nacholapithecus might be functionally related to quadrupedal-like behaviors instead of more derived antipronograde locomotor modes. Results further demonstrate that other African Miocene apes (with the exception of Turkanapithecus kalakolensis) generally fall within the Nacholapithecus range of variation, whose overall femoral shape resembles that of Ekembo spp. and Equatorius africanus. Our results accord with the previously inferred locomotor repertoire of Nacholapithecus, indicating a combination of generalized arboreal quadrupedalism combined with other antipronograde behaviors (e.g., vertical climbing).


Subject(s)
Biological Evolution , Femur/anatomy & histology , Fossils , Hominidae/anatomy & histology , Hominidae/classification , Animals , Female , Hominidae/physiology , Kenya , Male , Species Specificity
2.
Primates ; 62(2): 431-441, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33180215

ABSTRACT

Digestive tract measurements are often considered species specific, but little information exists on the degree to which they change during ontogeny within a species. Additionally, access to anatomical material from nondomestic species is often limited, with fixed tissues possibly representing the only available source, though the degree to which this material is representative in terms of dimensions and weight is debatable. In the present study, the macroscopic anatomy of the digestive tract (length of intestinal sections, and tissue weights of stomach and intestines) of 58 Lemur catta [ranging in age from 1 month (neonates) to 25 years], which had been stored frozen (n = 27) or fixed in formalin (n = 31), was quantified. Particular attention was paid to the caecum and the possible presence of an appendix. The intraspecific allometric scaling of body mass (BM)0.46[0.40;0.51] for total intestine length and BM0.48[0.41;0.54] for small intestine length was higher than the expected geometric scaling of BM0.33, and similar to that reported in the literature for interspecific scaling. This difference in scaling is usually explained by the hypothesis that, to maintain optimal absorption, the diameter of the intestinal tube cannot increase geometrically. Therefore, geometric volume gain of increasing body mass is accommodated for by more-than-geometric length scaling. According to the literature, not all L. catta have an appendix. No appendix was found in the specimens in the present study. The proportions of length measurements did not change markedly during ontogeny, indicating that the proportions of the foetus are representative of those of the adult animal. By contrast, width and tissue-mass scaling of the caecum indicated disproportionate growth of this organ during ontogeny that was not reflected in its length. Compared to overall intraspecific variation, the method of storage (frozen vs. formalin) had no relevant impact on length or weight measurements.


Subject(s)
Gastrointestinal Tract/anatomy & histology , Lemur/anatomy & histology , Specimen Handling/methods , Animals , Appendix , Body Weight , Cecum/anatomy & histology , Formaldehyde , Freezing , Gastrointestinal Tract/growth & development , Lemur/growth & development
3.
J Hum Evol ; 123: 129-140, 2018 10.
Article in English | MEDLINE | ID: mdl-30119896

ABSTRACT

Sexual size dimorphism in the African fossil ape Proconsul nyanzae (18 million years ago, 18 Ma) has been previously documented. However, additional evidence for sexual dimorphism in Miocene hominoids can provide great insight into the history of extant hominoid mating systems. The present study focused on body mass (BM) sexual dimorphism in Nacholapithecus kerioi from the Middle Miocene (16-15 Ma) in Africa. Bootstrap analysis revealed that P. nyanzae BM sexual dimorphism was lower than that in Pan troglodytes, which exhibits moderate sexual dimorphism, as reported previously. The same simulation revealed that BM sexual dimorphism of N. kerioi was comparable with that in Gorilla spp.; i.e., the males were approximately twice as large as the females. High sexual dimorphism in extant apes is usually indicative of a polygynous social structure (gorilla) or solitary/fission-fusion social system (orangutan). However, because of the high proportion of adult males in this fossil assemblage, the magnitude of dimorphism inferred here cannot be associated with a gorilla-like polygynous or oranguran-like solitary/fission-fusion social structure, and may reflect either taphonomic bias, or some other social structure. Extant hominoids have a long evolutionary history owing to their deep branching, comprising only a few existing members of the original highly successful group. Therefore, it is not surprising that the mating systems of extant hominoids fail to provide fossil apes with a perfect "model". The mating systems of extinct hominoids may have been more diverse than those of extant apes.


Subject(s)
Body Size , Fossils/anatomy & histology , Hominidae/anatomy & histology , Animals , Female , Kenya , Male , Sex Factors
4.
J Hum Evol ; 94: 117-25, 2016 05.
Article in English | MEDLINE | ID: mdl-27178463

ABSTRACT

This study describes two new sacral specimens of Nacholapithecus kerioi, KNM-BG 42753I and KNM-BG 47687A, from the Aka Aiteputh Formation in Nachola, northern Kenya, excavated in 2002. They are of roughly equal size and are considered to belong to males. When scaled by body mass, the lumbosacral articular surface area of the better preserved specimen, KNM-BG 42753I, is smaller than that in Old World monkeys but similar to that in extant great apes and New World monkeys, as well as Proconsul nyanzae. The relatively narrow dimensions of the first sacral vertebral body in the transverse and sagittal planes are characteristics of N. kerioi and P. nyanzae and similar to those of extant great apes. In N. kerioi, lumbosacral surface area relative to body mass is small. This may simply be an extension of a trend from the previously reported small thoracolumbar vertebrae to the sacrum. ​The first sacral vertebrae of N. kerioi and Epipliopithecus vindobonensis have a higher craniocaudal vertebral body reduction (CVR; a higher CVR indicates a wider cranial width relative to a narrower caudal width), similar to that in Old World monkeys. Old World monkeys have a higher CVR, and usually have three sacral vertebrae, fewer than seen in extant great apes, which have a lower CVR and four to six (sometimes as many as eight) sacral vertebrae. New World monkeys have a lower CVR than Old World monkeys, but generally possess only three sacral vertebrae, and have a large caudal articular surface, which may be related, at least in the Atelidae, to the grasping ability of their tails. The possibility that N. kerioi had only three sacral vertebrae cannot be ruled out, because E. vindobonensis and Old World monkeys, with higher CVRs, have sacra consisting of three sacral vertebrae.


Subject(s)
Fossils/anatomy & histology , Hominidae/anatomy & histology , Sacrum/anatomy & histology , Animals , Biological Evolution , Kenya , Male
5.
Am J Phys Anthropol ; 160(3): 469-82, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27000381

ABSTRACT

OBJECTIVES: The carpal bones of the middle Miocene hominoid Nacholapithecus kerioi are described based on new materials. MATERIALS AND METHODS: The materials comprise a trapezoid, three capitates, two hamates, a centrale, a lunate, a triquetrum, and a pisiform, collected during the 2001 and 2002 field seasons from Nachola, Kenya. We also describe a pisiform recently assigned to the type specimen of N. kerioi, KNM-BG 35250. RESULTS: In the Nacholapithecus wrist, the ulnar styloid process articulates with both the triquetrum and pisiform, and the triquetrum facet on the hamate is relatively proximodistally oriented in dorsal view. The Nacholapithecus capitate possesses a moderate distopalmar hook-like process and separated radial articular facets for the trapezoid and the second metacarpal due to the carpometacarpal ligament attachment that is absent in the Proconsul capitate. DISCUSSION: The carpal anatomy of Nacholapithecus is similar to that of the early Miocene hominoid Proconsul. However, Nacholapithecus wrist anatomy appears to exhibit slightly more emphasized stability. Am J Phys Anthropol 160:469-482, 2016. © 2016 Wiley Periodicals, Inc.


Subject(s)
Carpal Bones/anatomy & histology , Hominidae/anatomy & histology , Animals , Anthropology, Physical , Female , Fossils , Kenya , Male
6.
J Hum Evol ; 88: 25-42, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26553816

ABSTRACT

A new caudal thoracic and a new lumbar vertebra of Nacholapithecus kerioi, a middle Miocene hominoid from northern Kenya, are reported. The caudal thoracic vertebral body of N. kerioi has a rounded median ventral keel and its lateral sides are moderately concave. The lumbar vertebral body has an obvious median ventral keel. Based on a comparison of vertebral body cranial articular surface size between the caudal thoracic vertebrae in the present study and one discussed in a previous study (KNM-BG 35250BO, a diaphragmatic vertebra), N. kerioi has at least two post-diaphragmatic vertebrae (rib-bearing lumbar-type thoracic vertebrae), unlike extant hominoids. It also has thick, rounded, and moderately long metapophyses on the lumbar vertebra that project dorsolaterally. The spinous process bases of its caudal thoracic and lumbar vertebrae originate caudally between the postzygapophyses, as described previously in the KNM-BG 35250 holotype specimen. In other words, the postzygapophyses of N. kerioi do not project below the caudal border of the spinous processes, similar to those of extant great apes, and unlike small apes and monkeys, which have more caudally projecting postzygapophyses. Nacholapithecus kerioi has a craniocaudally expanded spinous process in relation to vertebral body length, also similar to extant great apes. Both these spinous process features of N. kerioi differ from those of Proconsul nyanzae. The caudal thoracic vertebra of N. kerioi has a caudally-directed spinous process, whose tip is tear-drop shaped. These features resemble those of extant apes. The morphology of the spinous process tips presumably helps vertebral stability by closely stacking adjacent spinous process tips as seen in extant hominoids. The morphology of the spinous process and postzygapophyses limits the intervertebral space and contributes to the stability of the functional lumbar region as seen in extant great apes, suggesting that antipronograde activity was included in the positional behavior of N. kerioi.


Subject(s)
Hominidae/anatomy & histology , Lumbar Vertebrae/anatomy & histology , Thoracic Vertebrae/anatomy & histology , Animals , Kenya , Male
7.
J Hum Evol ; 62(6): 677-95, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22542211

ABSTRACT

This paper describes the morphology of cervical vertebrae in Nacholapithecus kerioi, a middle Miocene primate species excavated from Nachola, Kenya in 1999-2002. The cervical vertebrae in Nacholapithecus are larger than those of Papio cynocephalus. They are more robust relative to more caudal vertebral bones. Since Nacholapithecus had large forelimbs, it is assumed that strong cervical vertebrae would have been required to resist muscle reaction forces during locomotion. On the other hand, the vertebral foramen of the lower cervical vertebrae in Nacholapithecus is almost the same size as or smaller than that of P. cynocephalus. Atlas specimens of Nacholapithecus resemble those of extant great apes with regard to the superior articular facet, and they have an anterior tubercle trait intermediate between that of extant apes and other primate species. Nacholapithecus has a relatively short and thick dens on the axis, similar to those of extant great apes and the axis body shape is intermediate between that of extant apes and other primates. Moreover, an intermediate trait between extant great apes and other primate species has been indicated with regard to the angle between the prezygapophyseal articular facets of the axis in Nacholapithecus. Although the atlas of Nacholapithecus is inferred as having a primitive morphology (i.e., possessing a lateral bridge), the shape of the atlas and axis leads to speculation that locomotion or posture in Nacholapithecus involved more orthograde behavior similar to that of extant apes, and, in so far as cervical vertebral morphology is concerned, it is thought that Nacholapithecus was incipiently specialized toward the characteristics of extant hominoids.


Subject(s)
Cervical Vertebrae/anatomy & histology , Fossils , Hominidae/anatomy & histology , Animals , Cervical Vertebrae/physiology , Female , Hominidae/physiology , Kenya , Locomotion , Male , Posture
8.
Primates ; 51(3): 263-71, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20361348

ABSTRACT

We cross-sectionally investigated prenatal ontogeny of craniofacial shape in the two subspecies of the Japanese macaque (Macaca fuscata fuscata and Macaca fuscata yakui) using a geometric morphometric technique to explore the process of morphogenetic divergence leading to the adult morphological difference between the subspecies. The sample comprised a total of 32 formalin-fixed fetal specimens of the two subspecies, in approximately the second and third trimesters. Each fetal cranium was scanned using computed tomography to generate a three-dimensional surface model, and 68 landmarks were digitized on the external and internal surface of each cranium to trace the growth-related changes in craniofacial shape of the two subspecies. The results of our study demonstrated that the two subspecies generally shared the same craniofacial growth pattern. Both crania tend to exhibit relative contraction of the neurocranium in the mediolateral and superoinferior directions, a more superiorly positioned cranial base, a more vertically oriented occipital squama, and a more anteriorly positioned viscerocranium as the cranial size increased. However, distinctive subspecific differences, for example relatively narrower orbital breadth, higher orbit, higher position of the nuchal crest, and more protrudent snout found in Macaca fuscata yakui were already present during the prenatal period. This study demonstrated that morphological differentiation in the craniofacial shape may occur at a very early stage of the fetal period even between closely related subspecies of the Japanese macaque.


Subject(s)
Facial Bones/embryology , Fetus/anatomy & histology , Macaca/anatomy & histology , Macaca/embryology , Skull/embryology , Animals , Animals, Newborn , Bone Development/physiology , Female , Macaca/classification , Pregnancy
9.
Primates ; 45(2): 97-104, 2004 Apr.
Article in English | MEDLINE | ID: mdl-15007747

ABSTRACT

The Miocene ape Nacholapithecus is known from rather complete skeletons; some of them preserve the shoulder joint, identified by three scapulae and one clavicle. Comparisons made with other Miocene and living apes ( Proconsul, Equatorius, Ugandapithecus) suggest that the mobility of the scapulohumeral joint was important, and scapular features such as the morphology and position of the spine and the morphology of the acromion and axillary border resemble those of climbing arboreal primates except for chimpanzees, gorillas, or orang-utans. From the size of the scapula (male Nasalis size), it is clear that the animal is smaller than an adult chimpanzee, but the clavicle is almost as relatively long as those of chimpanzees. Some features closer to colobine morphology reinforce the hypothesis that Nacholapithecus was probably a good climber and was definitely adapted for an arboreal life.


Subject(s)
Clavicle/anatomy & histology , Fossils , Hominidae/anatomy & histology , Scapula/anatomy & histology , Animals , Anthropometry , Hominidae/physiology , Kenya , Shoulder Joint/anatomy & histology , Shoulder Joint/physiology
10.
J Hum Evol ; 46(1): 69-103, 2004 Jan.
Article in English | MEDLINE | ID: mdl-14698685

ABSTRACT

An almost entire skeleton of a male individual of Nacholapithecus kerioi (KNM-BG 35250) was discovered from Middle Miocene (approximately 15 Ma) sediments at Nachola, northern Kenya. N. kerioi exhibits a shared derived subnasal morphology with living apes. In many postcranial features, such as articular shape, as well as the number of the lumbar vertebrae, N. kerioi resembles Proconsul heseloni and/or P. nyanzae, and lacks suspensory specializations characteristic of living apes. Similarly, N. kerioi shares some postcranial characters with Kenyapithecus spp. However, despite the resemblance, N. kerioi and Proconsul spp. are quite different in their body proportions and some joint morphologies. N. kerioi has proportionally large forelimb bones and long pedal digits compared to its hindlimb bones and lumbar vertebrae. Its distinctive body proportions suggest that N. kerioi was more derived for forelimb dominated arboreal activities than P. nyanzae and P. heseloni. On the other hand, it exhibits a mixture of derived and primitive cranio-dental and postcranial features relative to the contemporaneous Kenyapithecus and Early MioceneMorotopithecus. While the phylogenetic position of N. kerioi is unsettled, it seems necessary to posit parallel evolution of cranio-dental and/or postcranial features in fossil and living apes.


Subject(s)
Dentition , Hominidae , Locomotion , Animals , Anthropology, Physical , Fossils , Humans , Kenya , Male , Skeleton
12.
Primates ; 44(4): 371-412, 2003 Oct.
Article in English | MEDLINE | ID: mdl-14508653

ABSTRACT

We describe phalanges of the KNM-BG 35250 Nacholapithecus kerioi skeleton from the Middle Miocene of Kenya. Phalanges of N. kerioi display similarities to those of Proconsul heseloni despite their enhanced robusticity. They do not show highly specialized features as in living suspensory primates. However, N. kerioi manifests several distinctive features that are observed in neither living arboreal quadrupeds nor P. heseloni or P. nyanzae. The most remarkable of them is its phalangeal elongation. N. kerioi phalanges (particularly pedal) are as long as those of Pan despite its much smaller body size. While lengthened digits enable a secure grip of supports and are especially adaptive for grasping large vertical trunks, the skeletal and soft tissues are subjected to greater stress. Probably, strong selective pressures favored powerful hallucal/pollical assisted grips. Although this functional adaptation does not exclude the possible use of the terrestrial environment, arboreal behavioral modes must have been crucial in its positional repertoire. N. kerioi is distinguished from P. heseloni in the greater size of its manual phalanges over its pedal phalanges. These derived features of N. kerioi suggest positional modes supporting more weight on the forelimb, and which occur more frequently on vertical supports. If Proconsul is referred to as an "above-branch arboreal quadruped" with a deliberate and effective climbing capability, N. kerioi may be thought of as an "orthograde climber". While living apes are powerful orthograde climbers, they are also more or less suspensory specialists. Suspensory behavior (plus climbing) and pronograde quadrupedalism (plus climbing) are the two main arboreal behavioral adaptations in living anthropoids. Thus, N. kerioi is an unusual fossil primate in that it cannot be incorporated into this dichotomy. It is plausible that a N. kerioi-like orthograde climber with large forelimbs and cheiridia was a precursor of suspensory living apes, and N. kerioi may demonstrate what an initial hominoid of this grade might have looked like.


Subject(s)
Anthropometry , Foot Bones/anatomy & histology , Fossils , Hand/anatomy & histology , Hominidae/anatomy & histology , Animals , Biological Evolution , Humans , Kenya , Locomotion , Tomography, X-Ray Computed
SELECTION OF CITATIONS
SEARCH DETAIL
...