Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 614(7947): 249-255, 2023 02.
Article in English | MEDLINE | ID: mdl-36755173

ABSTRACT

The exciton, a bound state of an electron and a hole, is a fundamental quasiparticle induced by coherent light-matter interactions in semiconductors. When the electrons and holes are in distinct spatial locations, spatially indirect excitons are formed with a much longer lifetime and a higher condensation temperature. One of the ultimate frontiers in this field is to create long-lived excitonic topological quasiparticles by driving exciton states with topological properties, to simultaneously leverage both topological effects and correlation1,2. Here we reveal the existence of a transient excitonic topological surface state (TSS) in a topological insulator, Bi2Te3. By using time-, spin- and angle-resolved photoemission spectroscopy, we directly follow the formation of a long-lived exciton state as revealed by an intensity buildup below the bulk-TSS mixing point and an anomalous band renormalization of the continuously connected TSS in the momentum space. Such a state inherits the spin-polarization of the TSS and is spatially indirect along the z axis, as it couples photoinduced surface electrons and bulk holes in the same momentum range, which ultimately leads to an excitonic state of the TSS. These results establish Bi2Te3 as a possible candidate for the excitonic condensation of TSSs3 and, in general, opens up a new paradigm for exploring the momentum space emergence of other spatially indirect excitons, such as moiré and quantum well excitons4-6, and for the study of non-equilibrium many-body topological physics.

2.
Phys Rev Lett ; 123(12): 123601, 2019 Sep 20.
Article in English | MEDLINE | ID: mdl-31633989

ABSTRACT

Motivated by recent experimental advances in ultracold atoms, we analyze a non-Hermitian (NH) BCS Hamiltonian with a complex-valued interaction arising from inelastic scattering between fermions. We develop a mean-field theory to obtain a NH gap equation for order parameters, which are different from the standard BCS ones due to the inequivalence of left and right eigenstates in the NH physics. We find unconventional phase transitions unique to NH systems: superfluidity shows reentrant behavior with increasing dissipation, as a consequence of nondiagonalizable exceptional points, lines, and surfaces in the quasiparticle Hamiltonian for weak attractive interactions. For strong attractive interactions, the superfluid gap never collapses but is enhanced by dissipation due to an interplay between the BCS-BEC crossover and the quantum Zeno effect. Our results lay the groundwork for studies of fermionic superfluidity subject to inelastic collisions.

3.
Phys Rev Lett ; 121(9): 093001, 2018 Aug 31.
Article in English | MEDLINE | ID: mdl-30230902

ABSTRACT

A discrete time crystal is a phase unique to nonequilibrium systems, where discrete time translation symmetry is spontaneously broken. Most conventional time crystals proposed so far rely on the spontaneous breaking of on-site symmetries and their corresponding on-site symmetry operations. In this Letter, we propose a new time crystal dubbed the "spatial-translation-induced discrete time crystal," which is realized by spatial translation and its symmetry breaking. Owing to the properties of spatial translation, in this new time crystal, various time crystal orders can only emerge by changing the filling but not changing the driving protocol. We demonstrate that the local transport of charges or spins shows a nontrivial oscillation, enabling detection and applications of time crystal orders, and also provide promising platforms including quantum circuits. Our proposal opens up a new avenue of realizing time crystal orders by spatial translation in various quantum simulators.

SELECTION OF CITATIONS
SEARCH DETAIL
...