Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Jpn J Infect Dis ; 76(2): 151-154, 2023 Mar 24.
Article in English | MEDLINE | ID: mdl-36450570

ABSTRACT

Japanese encephalitis virus (JEV) is a mosquito-borne virus belonging to the JEV serocomplex within the genus Flavivirus, family Flaviviridae. It has 5 genotypes, G1-G5, based on the envelope (E) protein nucleotide sequence. JEV G3 circulated in Japan until the early 1990s when it was replaced by G1. JEV G3 was isolated from swine serum samples (sw/Kochi/1/2004) in the Kochi Prefecture, western Japan, in 2004. In addition, the 2018 isolates from pigs and cows (sw/Kochi/492/2018 and bo/Kochi/211/2018) in the same prefecture were identified as G3. The nucleotide sequencing results of the sw/Kochi/492/2018 and bo/Kochi/211/2018 polyprotein region differed from those of the sw/Kochi/1/2004 strain described in our previous report. Seven JEV isolates were identified as G1 in the same geographical area as that in this study. This result indicates that both JEV G1 and G3 are present in the Kochi area.


Subject(s)
Encephalitis Virus, Japanese , Encephalitis, Japanese , Swine Diseases , Female , Animals , Swine , Cattle , Encephalitis, Japanese/epidemiology , Encephalitis, Japanese/veterinary , Japan/epidemiology , Genotype , Swine Diseases/epidemiology , Phylogeny
2.
Psychiatry Clin Neurosci ; 76(5): 187-194, 2022 May.
Article in English | MEDLINE | ID: mdl-35167165

ABSTRACT

OBJECTIVES: Recent neuroimaging studies have indicated that the mesolimbic pathway, known to work as reward neuronal circuitry, regulates cognitive-behavioral flexibility in prolonged anorexia nervosa (AN). Although AN is associated with the highest mortality rate among psychiatric disorders, there have been few neuropathological studies on this topic. This study aims to identify alterations of the reward circuitry regions, especially in the nucleus accumbens (NAcc), using AN brain tissues. METHODS: The neuronal networks in AN cases and controls were examined by immunohistochemistry directed at tyrosine hydroxylase (TH; dopaminergic neuron marker) and glial fibrillary acidic protein (GFAP; astrocyte marker). We also immunochemically analyzed frozen samples presenting astrogliosis, especially in the NAcc and striatum. RESULTS: Histologically, neuronal deformation with cytoplasmic shrinkage was seen in reward-related brain regions, such as the orbitofrontal cortex/anterior cingulate cortex. The NAcc showed massive GFAP-positive astrocytes and dot-like protrusions of astrocytes in the shell compartment. In the shell, TH and GFAP immunoreactivities revealed prominent astrogliosis within striosomes, which receive projection from the ventral tegmental area (VTA). The numbers of GFAP-positive astrocytes in the NAcc (P = 0.0079) and VTA (P = 0.0025) of AN cases were significantly higher than those of controls. Strongly immunoreactive 18 to 25 kDa bands, which might represent degradation products, were detected only in the NAcc of AN cases. Clinically, all cases presented cognitive rigidity, which might reflect a deficit of the reward pathway. CONCLUSION: Our findings suggest impaired dopaminergic innervation between the NAcc and VTA in AN. Functional dysconnectivity in the reward-related network might induce neuropsychiatric symptoms associated with AN.


Subject(s)
Anorexia Nervosa , Anorexia Nervosa/metabolism , Gliosis/metabolism , Humans , Nucleus Accumbens/diagnostic imaging , Nucleus Accumbens/metabolism , Reward , Ventral Tegmental Area/physiology
3.
Brain Pathol ; 31(5): e12952, 2021 09.
Article in English | MEDLINE | ID: mdl-33754430

ABSTRACT

Prion-like spreading of abnormal proteins is proposed to occur in neurodegenerative diseases, and the progression of α-synuclein (α-syn) deposits has been reported in the brains of animal models injected with synthetic α-syn fibrils or pathological α-syn prepared from patients with Parkinson's disease (PD) and dementia with Lewy bodies (DLB). However, α-syn transmission in nonhuman primates, which are more similar to humans, has not been fully clarified. Here, we injected synthetic human α-syn fibrils into the left striatum of a macaque monkey (Macaca fuscata). At 3 months after the injection, we examined neurodegeneration and α-syn pathology in the brain using α-syn epitope-specific antibodies, antiphosphorylated α-syn antibodies (pSyn#64 and pSer129), anti-ubiquitin antibodies, and anti-p62 antibodies. Immunohistochemical examination with pSyn#64, pSer129, and α-syn epitope-specific antibodies revealed Lewy bodies, massive α-syn-positive neuronal intracytoplasmic inclusions (NCIs), and neurites in the left putamen. These inclusions were also positive for ubiquitin and p62. LB509, a human-specific α-syn antibody targeting amino acid residues 115-122, showed limited immunoreactivity around the injection site. The left substantia nigra (SN) and the bilateral frontal cortex also contained some NCIs and neurites. The left hemisphere, including parietal/temporal cortex presented sparse α-syn pathology, and no immunoreactivity was seen in olfactory nerves, amygdala, hippocampus, or right parietal/temporal cortex. Neuronal loss and gliosis in regions with α-syn pathology were mild, except for the left striatum and SN. Our results indicate that abnormal α-syn fibrils propagate throughout the brain of M. fuscata via projection, association, and commissural fibers, though the progression of α-syn pathology is limited.


Subject(s)
Brain/pathology , Lewy Bodies/pathology , Synucleinopathies/metabolism , alpha-Synuclein/metabolism , Animals , Inclusion Bodies/pathology , Macaca fuscata , Male , Parkinson Disease/metabolism , Parkinson Disease/pathology , Putamen/metabolism , Substantia Nigra/metabolism , Substantia Nigra/pathology , Synucleinopathies/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...