Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Brain Res Bull ; 117: 39-44, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26247839

ABSTRACT

The acute effects of high-dose Li(+) treatment on glutamatergic and GABAergic transmissions were studied in the "synaptic bouton" preparation of isolated rat hippocampal pyramidal neurons by using focal electrical stimulation. Both action potential-dependent glutamatergic excitatory and GABAergic inhibitory postsynaptic currents (eEPSC and eIPSC, respectively) were dose-dependently inhibited in the external media containing 30-150 mM Li(+), but the sensitivity for Li(+) was greater tendency for eEPSCs than for eIPSCs. When the effects of Li(+) on glutamate or GABAA receptor-mediated whole-cell responses (IGlu and IGABA) elicited by an exogenous application of glutamate or GABA were examined in the postsynaptic soma membrane of CA3 neurons, Li(+) slightly inhibited both IGlu and IGABA at the 150 mM Li(+) concentration. Present results suggest that acute treatment with high concentrations of Li(+) acts preferentially on presynaptic terminals, and that the Li(+)-induced inhibition may be greater for excitatory than for inhibitory transmission.


Subject(s)
Central Nervous System Agents/pharmacology , Excitatory Postsynaptic Potentials/drug effects , Inhibitory Postsynaptic Potentials/drug effects , Lithium Compounds/pharmacology , Pyramidal Cells/drug effects , Animals , CA1 Region, Hippocampal/drug effects , CA1 Region, Hippocampal/physiology , CA3 Region, Hippocampal/drug effects , CA3 Region, Hippocampal/physiology , Cells, Cultured , Dose-Response Relationship, Drug , Electric Stimulation , Excitatory Postsynaptic Potentials/physiology , Glutamic Acid/metabolism , Inhibitory Postsynaptic Potentials/physiology , Neural Inhibition/drug effects , Neural Inhibition/physiology , Patch-Clamp Techniques , Presynaptic Terminals/drug effects , Presynaptic Terminals/physiology , Pyramidal Cells/physiology , Rats, Wistar , gamma-Aminobutyric Acid/metabolism
2.
Chemosphere ; 120: 598-607, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25462303

ABSTRACT

Triphenyltin (TPT) is an organometallic compound that poses a known environmental hazard to some fish and mollusks, as well as mammals. However, its neurotoxic mechanisms in the mammalian brain are still unclear. Thus, we have investigated mechanisms through which TPT modulates glutamatergic synaptic transmission, including spontaneous, miniature, and evoked excitatory postsynaptic currents (sEPSCs, mEPSCs, and eEPSCs respectively), in a rat hippocampal CA3 'synaptic-bouton' preparation. TPT, at environmentally relevant concentrations (30 nM to 1 µM), significantly increased the frequency of sEPSCs and mEPSCs in a concentration-dependent manner, without affecting the currents' amplitudes. The facilitatory effects of TPT on mEPSC frequency were seen even in a Ca(2+)-free external solution containing tetrodotoxin. These effects were further prolonged by adding caffeine, which releases Ca(2+) from intracellular Ca(2+) storage sites. In glutamatergic eEPSCs evoked by paired-pulse stimuli, TPT at concentrations greater than or equal to 100 nM markedly increased the current amplitude by the first pulse and decreased failure rate and pair-pulse ratio. On the other hand, both voltage-dependent Na(+) and Ca(2+) channels were unaffected by submicromolar concentrations of TPT. Overall, these results suggest that TPT, at environmentally relevant concentrations, affects presynaptic transmitter release machinery by directly modulating Ca(2+) storage. Further, findings of this study imply that excitotoxic mechanisms may underlie TPT-induced neuronal damage.


Subject(s)
Calcium/metabolism , Environmental Pollutants/toxicity , Excitatory Postsynaptic Potentials/drug effects , Organotin Compounds/toxicity , Presynaptic Terminals/drug effects , Synaptic Transmission/physiology , Analysis of Variance , Animals , Caffeine/pharmacology , Hippocampus/cytology , Japan , Male , Neurons/drug effects , Patch-Clamp Techniques , Rats , Rats, Wistar , Synaptic Transmission/drug effects , Tetrodotoxin/chemistry
3.
Pharmaceutics ; 5(3): 371-84, 2013 Jul 01.
Article in English | MEDLINE | ID: mdl-24300511

ABSTRACT

The use of a prodrug, a conjugate of an active drug with a lipophilic substituent, is a good way of increasing the cutaneous absorption of a drug. However, the activity of dermal hydrolases has rarely been investigated in humans, or experimental animals. In the present study, we focused on the identification of rat dermal esterases and the hydrolysis of a prodrug during permeation across rat skin. We found that carboxylesterase (CES), especially the rat CES1 isozyme, Hydrolase A, is expressed in rat skin and that the hydrolysis of p-nitrophenyl acyl derivatives and caproyl-propranolol (PL) was 20-fold lower in the 9000g supernatant fraction of skin homogenate than in liver microsomes. A permeation study of caproyl-PL was performed in rat full-thickness and stripped skin using a flow-through diffusion cell. Caproyl-PL was easily partitioned into the stratum corneum and retained, not only in the stratum corneum, but also in viable epidermis and dermis. Caproyl-PL could barely be detected in the receptor fluid after application to either full-thickness or stripped skin. PL, derived from caproyl-PL, was, however, detected in receptor fluid after extensive hydrolysis of caproyl-PL in viable skin. Permeation of PL was markedly decreased under CES inhibition, indicating that the net flux of caproyl-PL is dependent on its conversion rate to PL.

SELECTION OF CITATIONS
SEARCH DETAIL
...