Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Life (Basel) ; 13(2)2023 Feb 18.
Article in English | MEDLINE | ID: mdl-36836935

ABSTRACT

Alzheimer's disease is an irreversible neurological disorder for which there are no effective small molecule therapeutics. A phosphodiesterase 5 (PDE5) inhibitor is a candidate medicine for the treatment of Alzheimer's disease. Rutaecarpine, an indole alkaloid found in Euodiae Fructus, has inhibitory activity for PDE5. Euodiae Fructus contains more evodiamine than rutaecarpine. Therefore, we performed molecular dynamics simulations of the complex of PDE5 and evodiamine. The results showed that the PDE5 and (-)-evodiamine complexes were placed inside the reaction center compared to the case of PDE5 and (+)-evodiamine complex. The binding of (-)-evodiamine to PDE5 increased the root-mean-square deviation and radius of gyration of PDE5. In the PDE5 with (-)-evodiamine complex, the value of the root-mean-square fluctuation of the M-loop, which is thought to be important for activity, increased. This result suggests that (-)-evodiamine may have inhibitory activity.

2.
Life (Basel) ; 13(2)2023 Jan 22.
Article in English | MEDLINE | ID: mdl-36836663

ABSTRACT

The characteristic shape changes observed in the growth and division of L-form cells have been explained by several theoretical studies and simulations using a vesicle model in which the membrane area increases with time. In those theoretical studies, characteristic shapes such as tubulation and budding were reproduced in a non-equilibrium state, but it was not possible to incorporate deformations that would change the topology of the membrane. We constructed a vesicle model in which the area of the membrane increases using coarse-grained particles and analyzed the changes in the shape of growing membrane by the dissipative particle dynamics (DPD) method. In the simulation, lipid molecules were added to the lipid membrane at regular time intervals to increase the surface area of the lipid membrane. As a result, it was found that the vesicle deformed into a tubular shape or a budding shape depending on the conditions for adding lipid molecules. This suggests that the difference in the place where new lipid molecules are incorporated into the cell membrane during the growth of L-form cells causes the difference in the transformation pathway of L-form cells.

3.
Phys Rev E ; 99(4-1): 042418, 2019 Apr.
Article in English | MEDLINE | ID: mdl-31108718

ABSTRACT

Experimental observations indicate that the repulsion of particles is a factor that induces the transformation of vesicles containing multiple particles. Metropolis Monte Carlo simulations are performed with two models in which repulsive particles are enclosed inside a vesicle. The distribution of the particles and the effective bending coefficient and surface tension of the membrane are analyzed. The shape and internal structure of the vesicle containing the particles are investigated as the vesicle volume is decreased. It is revealed that the repulsive interaction between particles produces a layered structure and stiffens the membrane. When particles repulsively interact over a long range, the membrane takes on a dumbbell form.

4.
PLoS One ; 11(2): e0149474, 2016.
Article in English | MEDLINE | ID: mdl-26889829

ABSTRACT

Peptides with cell attachment activity are beneficial component of biomaterials for tissue engineering. Conformational structure is one of the important factors for the biological activities. The EF1 peptide (DYATLQLQEGRLHFMFDLG) derived from laminin promotes cell spreading and cell attachment activity mediated by α2ß1 integrin. Although the sequence of the EF2 peptide (DFATVQLRNGFPYFSYDLG) is homologous sequence to that of EF1, EF2 does not promote cell attachment activity. To determine whether there are structural differences between EF1 and EF2, we performed replica exchange molecular dynamics (REMD) simulations and conventional molecular dynamics (MD) simulations. We found that EF1 and EF2 had ß-sheet structure as a secondary structure around the global minimum. However, EF2 had variety of structures around the global minimum compared with EF1 and has easily escaped from the bottom of free energy. The structural fluctuation of the EF1 is smaller than that of the EF2. The structural variation of EF2 is related to these differences in the structural fluctuation and the number of the hydrogen bonds (H-bonds). From the analysis of H-bonds in the ß-sheet, the number of H-bonds in EF1 is larger than that in EF2 in the time scale of the conventional MD simulation, suggesting that the formation of H-bonds is related to the differences in the structural fluctuation between EF1 and EF2. From the analysis of other non-covalent interactions in the amino acid sequences of EF1 and EF2, EF1 has three pairs of residues with hydrophobic interaction, and EF2 has two pairs. These results indicate that several non-covalent interactions are important for structural stabilization. Consequently, the structure of EF1 is stabilized by H-bonds and pairs of hydrophobic amino acids in the terminals. Hence, we propose that non-covalent interactions around N-terminal and C-terminal of the peptides are crucial for maintaining the ß-sheet structure of the peptides.


Subject(s)
Laminin/chemistry , Molecular Dynamics Simulation , Peptides/chemistry , Protein Conformation , Amino Acid Sequence , Cell Adhesion , Hydrogen Bonding , Laminin/metabolism , Molecular Sequence Data , Peptides/metabolism , Thermodynamics
5.
Orig Life Evol Biosph ; 43(4-5): 411-28, 2013 Oct.
Article in English | MEDLINE | ID: mdl-24132659

ABSTRACT

To investigate the possible interplanetary transfer of life, numerous exposure experiments have been carried out on various microbes in space since the 1960s. In the Tanpopo mission, we have proposed to carry out experiments on capture and space exposure of microbes at the Exposure Facility of the Japanese Experimental Module of the International Space Station (ISS). Microbial candidates for the exposure experiments in space include Deinococcus spp.: Deinococcus radiodurans, D. aerius and D. aetherius. In this paper, we have examined the survivability of Deinococcus spp. under the environmental conditions in ISS in orbit (i.e., long exposure to heavy-ion beams, temperature cycles, vacuum and UV irradiation). A One-year dose of heavy-ion beam irradiation did not affect the viability of Deinococcus spp. within the detection limit. Vacuum (10(-1) Pa) also had little effect on the cell viability. Experiments to test the effects of changes in temperature from 80 °C to -80 °C in 90 min (± 80 °C/90 min cycle) or from 60 °C to -60 °C in 90 min (± 60 °C/90 min cycle) on cell viability revealed that the survival rate decreased severely by the ± 80 °C/90 min temperature cycle. Exposure of various thicknesses of deinococcal cell aggregates to UV radiation (172 nm and 254 nm, respectively) revealed that a few hundred micrometer thick aggregate of deinococcal cells would be able to withstand the solar UV radiation on ISS for 1 year. We concluded that aggregated deinococcal cells will survive the yearlong exposure experiments. We propose that microbial cells can aggregate as an ark for the interplanetary transfer of microbes, and we named it 'massapanspermia'.


Subject(s)
Deinococcus/physiology , Deinococcus/radiation effects , Extraterrestrial Environment , Space Flight , Exobiology , Heavy Ions/adverse effects , Species Specificity , Temperature , Time Factors , Ultraviolet Rays/adverse effects , Vacuum
6.
J Chem Phys ; 134(9): 095103, 2011 Mar 07.
Article in English | MEDLINE | ID: mdl-21385001

ABSTRACT

Arginine-rich peptide and Antennapedia are cell-penetrating peptides (CPPs) which have the ability to permeate plasma membrane. Deformation of the plasma membrane with CPPs is the key to understand permeation mechanism. We investigate the dynamics of CPP and the lipid bilayer membrane by coarse-grained simulation. We found that the peptide makes inverted micelle in the lipid bilayer membrane, when the attractive potential between the peptide and lipid heads is strong. The inverted micelle is formed to minimize potential energy of the peptide. For vesicle membrane, the peptide moves from the outer vesicle to the inner vesicle through the membrane. The translocation of the peptide suggests inverted micelle model as a possible mechanism of CPPs.


Subject(s)
Cell Membrane/chemistry , Cell-Penetrating Peptides/chemistry , Lipid Bilayers/chemistry , Molecular Dynamics Simulation , Micelles
7.
Phys Rev E Stat Nonlin Soft Matter Phys ; 65(5 Pt 1): 051907, 2002 May.
Article in English | MEDLINE | ID: mdl-12059593

ABSTRACT

We studied the structural changes of bilayer vesicles induced by mechanical forces using a Brownian dynamics simulation. Two nanoparticles, which interact repulsively with amphiphilic molecules, are put inside a vesicle. The position of one nanoparticle is fixed, and the other is moved by a constant force as in optical-trapping experiments. First, the pulled vesicle stretches into a pear or tube shape. Then the inner monolayer in the tube-shaped region is deformed, and a cylindrical structure is formed between two vesicles. After stretching the cylindrical region, fission occurs near the moved vesicle. Soon after this the cylindrical region shrinks. The trapping force approximately 100 pN is needed to induce the formation of the cylindrical structure and fission.


Subject(s)
Biophysics/methods , Lipid Bilayers/chemistry , Cell Membrane/physiology , Computer Simulation , Models, Statistical , Probability , Time Factors
8.
Biophys J ; 83(1): 299-308, 2002 Jul.
Article in English | MEDLINE | ID: mdl-12080121

ABSTRACT

We studied the interaction of bilayer vesicles and adhesive nanoparticles using a Brownian dynamics simulation. The nanoparticles are simple models of proteins or colloids. The adhering nanoparticle induces the morphological change of the vesicle: budding, formation of two vesicles in which only outer monolayers are connected, and fission. We also show that the nanoparticle promotes the fusion process: fusion-pore opening from a stalk intermediate, a neck-like structure that only connects outer monolayers of two vesicles. The nanoparticle bends the stalk, and induces the pore opening.


Subject(s)
Biophysics/methods , Lipid Bilayers/chemistry , Membrane Fusion , Cell Adhesion , Models, Biological , Models, Statistical , Nanotechnology , Temperature , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...