Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Bioorg Med Chem Lett ; 10(6): 531-4, 2000 Mar 20.
Article in English | MEDLINE | ID: mdl-10741547

ABSTRACT

The activity of a novel series of peptidomimetic hematoregulatory compounds, designed based on a pharmacophore model inferred from the structure activity relationships of a peptide SK&F 107647 (1), is reported. These compounds induce a hematopoietic synergistic factor (HSF) which in turn modulates host defense. The compounds may represent novel therapeutic agents in the area of hematoregulation.


Subject(s)
Cardiovascular Agents/chemical synthesis , Chemokines, CXC , Intercellular Signaling Peptides and Proteins , Oligopeptides/pharmacology , Amino Acids/chemistry , Animals , Candidiasis/drug therapy , Cardiovascular Agents/pharmacology , Cardiovascular Agents/therapeutic use , Cell Line , Chemokine CXCL1 , Chemotactic Factors/metabolism , Drug Design , Granulocyte Colony-Stimulating Factor/biosynthesis , Granulocyte-Macrophage Colony-Stimulating Factor/biosynthesis , Growth Substances/metabolism , Macrophage Colony-Stimulating Factor/biosynthesis , Mice , Oligopeptides/chemistry , Receptors, Drug/chemistry , Receptors, Drug/drug effects
2.
J Med Chem ; 39(19): 3814-9, 1996 Sep 13.
Article in English | MEDLINE | ID: mdl-8809169

ABSTRACT

Hematopoiesis is a lifelong cell renewal process regulated by a family of lineage specific hematopoietic growth factors. Several hematopoietic growth factors such as G-CSF, GM-CSF, and M-CSF have been clinically evaluated for enhancement of host defense in normal and immunocompromised patients and for the treatment of infectious diseases. This paper reports the structure-activity relationships of low molecular weight hematoregulatory peptides based on a nonapeptide (1, SK&F 107647). Like the macromolecular growth factors, these peptides modulate host defense. A molecular target for this class of compounds has not yet been identified. However, the structure-activity relationships established by this study implicate a very specific molecular recognition event that is pivotal for the biological activities of 1 and its analogues.


Subject(s)
Hematopoiesis/drug effects , Hematopoietic Cell Growth Factors/biosynthesis , Oligopeptides/chemistry , Oligopeptides/chemical synthesis , Oligopeptides/pharmacology , Picolinic Acids/chemical synthesis , Amino Acid Sequence , Animals , Bone Marrow Cells , Cell Line , Colony-Forming Units Assay , Dose-Response Relationship, Drug , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/drug effects , Mice , Mice, Inbred BALB C , Molecular Structure , Oligopeptides/administration & dosage , Picolinic Acids/administration & dosage , Picolinic Acids/pharmacology , Stromal Cells/drug effects , Stromal Cells/metabolism , Structure-Activity Relationship
3.
Pharm Res ; 13(8): 1213-8, 1996 Aug.
Article in English | MEDLINE | ID: mdl-8865315

ABSTRACT

PURPOSE: The purpose of this study was to determine whether the binding of the diastereomers of Val-Val to the apical oligopeptide transporter(s) could be correlated with their cellular uptake and transepithelial transport. METHODS: The Caco-2 cell culture system was used for all experiments. The binding of the diastereomers of Val-Val was evaluated by determining their ability to inhibit [3H]cephalexin uptake. The stability of the diastereomers was determined in a homogenate of Caco-2 cells and in the apical bathing solution over Caco-2 cell monolayers. The cellular uptake and transepithelial transport properties of the individual diastereomers were studied using Caco-2 cell monolayers. RESULTS: 10 mM concentrations of L-Val-L-Val, L-Val-D-Val, D-Val-L-Val and D-Val-D-Val inhibited cellular uptake of [3H]cephalexin (0.1 mM) by 92%, 37%, 70%, and 18%, respectively. When the cellular uptake of Val-Val diastereomers (1 mM) were evaluated, the intracellular concentrations of L-Val-D-Val and D-Val-L-Val were 15 and 50 times higher, respectively, than that of D-Val-D-Val. The cellular uptake of L-Val-D-Val and D-Val-L-Val was inhibited by Gly-Pro (10 mM) ( > 95%), whereas Gly-Pro had no effect on the cellular uptake of D-Val-D-Val. L-Val-L-Val was not detected in the Caco-2 cells, probably due to its metabolic lability. When the transepithelial transport of the Val-Val diastereomers (1 mM) was determined, L-Val-D-Val, D-Val-L-Val and D-Val-D-Val transport rates were similar. The transepithelial transport of L-Val-D-Val and D-Val-L-Val was inhibited by Gly-Pro (10 mM) 36% and 30%, respectively, while Gly-Pro inhibited carnosine (1 mM) transepithelial transport by 65%. Gly-Pro had no effect on the transepithelial transport of D-Val-D-Val. CONCLUSIONS: These results suggest that the major transepithelial transport route of L-Val-D-Val, D-Val-L-Val and D-Val-D-Val is passive diffusion via the paracellular route. The binding of Val-Val diastereomers to the oligopeptide transporter(s) is a good predictor of their cellular uptake, however, the binding is not a good predictor of their transepithelial transport. It appears that the stereochemical requirements for the transporter that mediates efflux of the peptide across the basolateral membrane may be different from the requirements for the apical transporter that mediates cellular uptake.


Subject(s)
Dipeptides/metabolism , Biological Transport , Caco-2 Cells , Cephalexin/antagonists & inhibitors , Cephalexin/metabolism , Dipeptides/chemistry , Dipeptides/pharmacology , Epithelium/metabolism , Humans , Stereoisomerism , Tritium
SELECTION OF CITATIONS
SEARCH DETAIL
...