Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 180
Filter
1.
Chem Pharm Bull (Tokyo) ; 72(1): 86-92, 2024.
Article in English | MEDLINE | ID: mdl-38233136

ABSTRACT

For powder compaction, the Kawakita equation has been used to estimate the powder behavior inside the die. The compression pressure exerted on powders is not homogeneous because of the friction on the die wall. However, the yield pressure and porosity estimated using the Kawakita equation are defined based on the assumption that homogeneous voids and compression pressure are distributed throughout the powder bed. In this study, an extended Kawakita equation was derived by considering the variation in the compression pressure as it corresponds to the distance from the loading punch surface. The yield time section estimated from the extended Kawakita equation was wider than that which was estimated via the classical equation. This result is consistent with the assumptions used to derive the extended Kawakita equation. Furthermore, a comparison of the porosity changes before and after the yield pressure was applied indicate that the direct cause of the yield is the spatial constraints of the powder particles. Equivalent stresses were defined to clarify the critical factor that constitutes the extended Kawakita equation. As a result, "taking into account the die wall friction" was considered to be the critical factor in the extended Kawakita equation. As these findings were theoretically determined by the extended Kawakita equation, a useful model was derived for a better understanding of powder compaction in die.


Subject(s)
Powders , Pressure , Porosity , Tablets , Drug Compounding
2.
Pharm Dev Technol ; 28(7): 611-624, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37357890

ABSTRACT

The objective of this study was to develop novel invaethosomes (I-ETS) and invaflexosomes (I-FXS) to enhance the dermal delivery of clotrimazole (CZ). Twenty model CZ-loaded I-ETS and I-FXS formulations were created according to a face-centered central composite experimental design. CZ-loaded vesicle formulations containing a constant concentration of 0.025% w/v CZ and various amounts of ethanol, d-limonene, and polysorbate 20 as penetration enhancers were prepared using the thin film hydration method. The physicochemical characteristics, skin permeability, and antifungal activity were characterized. The skin permeability of the experimental CZ-loaded I-ETS/I-FXS was significantly higher than that of conventional ethosomes, flexosomes, and the commercial product (1% w/w CZ cream). The mechanism of action was confirmed to be skin penetration of low ethanol base vesicles through the disruption of the skin microstructure. The optimal I-ETS in vitro antifungal activity against C. albicans differed significantly from that of ETS and the commercial cream (control). The response surface methodology predicted by Design Expert® was helpful in understanding the complicated relationship between the causal factors and the response variables of the 0.025% w/v CZ-loaded I-ETS/I-FXS formulation. Based on the available information, double vesicles seem to be promising versatile carriers for dermal drug delivery of CZ.


Subject(s)
Antifungal Agents , Clotrimazole , Clotrimazole/pharmacology , Clotrimazole/chemistry , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Skin , Drug Delivery Systems/methods , Candida albicans , Ethanol/chemistry , Administration, Cutaneous
3.
Chem Pharm Bull (Tokyo) ; 71(6): 386-397, 2023.
Article in English | MEDLINE | ID: mdl-37258191

ABSTRACT

Various stresses and strains are generated on the surface and inside of pharmaceutical tablets when an external force is applied. In addition, stresses in various directions can remain on the surface and inside the tablets because they are generally prepared by compaction of pharmaceutical powders using dies and punches. As it is difficult to measure the stress and strain generation in the tablets experimentally, a numerical simulation was applied by employing a finite element method (FEM). An elastic model is often used to represent stress and strain generation after loading an external force to tablets, and the Drucker-Prager cap (DPC) model has been widely recognized for representing the remaining stress distributions during the compaction of powder to tablet form. Firstly, this article describes an FEM simulation of the stress generation on the surface of the scored tablets after loading the bending force from the back side of the tablets. Next, the FEM simulation was introduced to determine the effect of diametrical compression on the stress and strain generation in the tablets by comparing the results measured experimentally. Furthermore, the residual stresses remaining inside the tablets were simulated using FEM, in which powder compaction was represented as the DPC model. A clear difference was observed in the residual stress distributions between the flat and convex tablets. This indicates that FEM simulation is useful for achieving a science-based understanding of critical quality attributes in various types of tablets.


Subject(s)
Technology, Pharmaceutical , Technology, Pharmaceutical/methods , Powders , Finite Element Analysis , Computer Simulation , Tablets
4.
Sci Rep ; 13(1): 3102, 2023 02 22.
Article in English | MEDLINE | ID: mdl-36813850

ABSTRACT

Small interfering RNAs (siRNAs) knockdown the expression of target genes by causing mRNA degradation and are a promising therapeutic modality. In clinical practice, lipid nanoparticles (LNPs) are used to deliver RNAs, such as siRNA and mRNA, into cells. However, these artificial nanoparticles are toxic and immunogenic. Thus, we focused on extracellular vesicles (EVs), natural drug delivery systems, for the delivery of nucleic acids. EVs deliver RNAs and proteins to specific tissues to regulate various physiological phenomena in vivo. Here, we propose a novel method for the preparation siRNAs encapsulated in EVs using a microfluidic device (MD). MDs can be used to generate nanoparticles, such as LNPs, by controlling flow rate to the device, but the loading of siRNAs into EVs using MDs has not been reported previously. In this study, we demonstrated a method for loading siRNAs into grapefruit-derived EVs (GEVs), which have gained attention in recent years for being plant-derived EVs developed using an MD. GEVs were collected from grapefruit juice using the one-step sucrose cushion method, and then GEVs-siRNA-GEVs were prepared using an MD device. The morphology of GEVs and siRNA-GEVs was observed using a cryogenic transmission electron microscope. Cellular uptake and intracellular trafficking of GEVs or siRNA-GEVs to human keratinocytes were evaluated by microscopy using HaCaT cells. The prepared siRNA-GEVs encapsulated 11% of siRNAs. Moreover, intracellular delivery of siRNA and gene suppression effects in HaCaT cells were achieved using these siRNA-GEVs. Our findings suggested that MDs can be used to prepare siRNA-EV formulations.


Subject(s)
Citrus paradisi , Extracellular Vesicles , Nanoparticles , Humans , RNA, Small Interfering/metabolism , Gene Knockdown Techniques , HaCaT Cells , Extracellular Vesicles/metabolism , Lab-On-A-Chip Devices
5.
Chem Pharm Bull (Tokyo) ; 69(11): 1088-1096, 2021.
Article in English | MEDLINE | ID: mdl-34719591

ABSTRACT

From the viewpoint of self-medication, it is valuable to develop patient-friendly scored tablets that possess dividing uniformity. In this context, we attempted to optimize the preparation conditions for a tablet with a unique shape, such as a concavely curved scored tablet (CCST). Employing a design of experiment and a response surface method incorporating a thin-plate spline interpolation, and a bootstrap resampling technique, the optimal preparation conditions for CCST were successfully developed. To make it possible to scaleup the optimal solution estimated on a trial-scale, a Bayesian estimation was applied. Credible ranges of critical responses in large-scale manufacturing were estimated as a posterior probability from the trial-scale experiment as a prior probability. In terms of the large-scale manufacturing, the possibility of solving the scaleup problem was suggested using Bayesian estimation. Furthermore, a simulation study using a finite element method revealed that strong tensile stresses generated along the tip of the score line in CCST when an outer force was applied to the back surface of CCST. An advantage in dividing uniformity is indicated by the unique shape of CCST.


Subject(s)
Tablets/chemistry , Bayes Theorem , Chemistry, Pharmaceutical , Humans , Models, Chemical , Solubility , Surface Properties , Tablets/pharmacology , Tensile Strength
6.
Chem Pharm Bull (Tokyo) ; 69(7): 674-680, 2021.
Article in English | MEDLINE | ID: mdl-34193716

ABSTRACT

Quality by design (QbD) is an essential concept for modern manufacturing processes of pharmaceutical products. Understanding the science behind manufacturing processes is crucial; however, the complexity of the manufacturing processes makes implementing QbD challenging. In this study, structural equation modeling (SEM) was applied to understand the causal relationships between variables such as process parameters, material attributes, and quality attributes. Based on SEM analysis, we identified a model composed of the above-mentioned variables and their latent factors without including observational data. Difficulties in fitting the observed data to the proposed model are often encountered in SEM analysis. To address this issue, we adopted Bayesian estimation with Markov chain Monte Carlo simulation. The tableting process involving the wet-granulation process for acetaminophen was employed as a model case for the manufacturing process. The results indicate that SEM analysis could be useful for implementing QbD for the manufacturing processes of pharmaceutical products.


Subject(s)
Latent Class Analysis , Tablets/chemistry , Acetaminophen/chemistry , Bayes Theorem , Drug Compounding/methods , Markov Chains , Monte Carlo Method , Principal Component Analysis
7.
Pharmaceutics ; 12(5)2020 May 06.
Article in English | MEDLINE | ID: mdl-32384778

ABSTRACT

: A highly viscous substance was prepared by evaporating an ethanol solution containing two hydrophilic vitamins; vitamin C, and vitamin B6. The viscous substance and physical mixture of the two vitamins were tested using a differential scanning calorimeter and an X-ray diffractometer. The highly viscous substance was found to be a liquid crystal (LC) made of these two hydrophilic vitamins. Determination by proton nuclear magnetic resonance measurement suggested that intramolecular hydrogen bonding in vitamin B6 was eliminated by the LC formation. This LC compound showed high solubility in 1,3-butanediol (almost 87%). Much higher skin permeation of both vitamin C and B6 was also observed from the LC compound than that from the physical mixture. The present LC compound containing vitamin C and vitamin B6 may be useful for pharmaceutical and cosmeceutical applications.

8.
Int J Pharm ; 577: 119083, 2020 Mar 15.
Article in English | MEDLINE | ID: mdl-31988032

ABSTRACT

Our aim was to understand better the causal relationships between material attributes (MAs), process parameters (PPs), and critical quality attributes (CQAs) using an originally created large dataset and regularized linear regression models. In this study, we focused on the following three points: (1) creation of a dataset comprising several tablet production methods, (2) the influence of interaction terms of MAs and/or PPs, and (3) comparison of regularized linear regression models with partial least squares (PLS) regression. First, we prepared 44 kinds of tablets using direct compression and five kinds of granulation methods. We then measured 12 MAs and two model CQAs (tensile strength and disintegration time of tablet). Principal component analysis showed that the constructed dataset comprised a wide variety of particles. We applied regularized linear regression models, such as ridge regression, LASSO and Elastic Net (ENET), and PLS to our dataset to predict CQAs from the MAs and PPs. As a result of external validation, the prediction performance of the models was sufficiently high, although ENET was slightly better than the other methods. Moreover, in almost all cases, the models with interaction terms showed higher predictive ability than those without interaction terms, indicating that the interaction terms of MAs and/or PPs have a strong influence on CQAs. ENET also allowed the selection of critical factors that strongly affect CQAs. The results of this study will help to understand systematically knowledge obtained in pharmaceutical development.


Subject(s)
Chemistry, Pharmaceutical , Excipients/chemistry , Ibuprofen/administration & dosage , Technology, Pharmaceutical , Datasets as Topic , Ibuprofen/chemistry , Least-Squares Analysis , Linear Models , Principal Component Analysis , Tablets
9.
Chem Pharm Bull (Tokyo) ; 67(10): 1144-1151, 2019.
Article in English | MEDLINE | ID: mdl-31582634

ABSTRACT

Definitive screening design (DSD) is a new class of small three-level experimental design that is attracting much attention as a technical tool of a quality by design (QbD) approach. The purpose of this study is to examine the usefulness of DSD for QbD through a pharmaceutical study on the preparation of ethenzamide-containing orally disintegrating tablet. Model tablets were prepared by directly compressing the mixture of the active pharmaceutical ingredient (API) and excipients. The five evaluated factors assigned to DSD were: the contents of API (X1) and lubricant (X2), and the compression force (X3) of the tableting process, the mixing time (X4), and the filling ratio of powder in the V-type mixer (X5). After tablet preparation, hardness and disintegration time were measured. The same experiments were performed by using the conventional design of experiments [i.e., L8 and L16 orthogonal array designs and central composite design (CCD)]. Results showed that DSD successfully clarified how various factors contribute to tablet properties. Moreover, the analysis result from DSD agreed well with those from the L8 and L16 experiments. In additional experiments, response surfaces for tablet properties were created by DSD. Compared with the response surfaces created by CCD, DSD could produce reliable response surfaces for its smaller number of experiments. We conclude that DSD is a powerful tool for implementing pharmaceutical studies including the QbD approach.


Subject(s)
Drug Design , Pharmaceutical Preparations/chemistry , Drug Compounding , Drug Evaluation, Preclinical , Pharmaceutical Preparations/administration & dosage , Surface Properties , Tablets/administration & dosage , Tablets/chemistry
10.
Int J Pharm ; 563: 406-412, 2019 May 30.
Article in English | MEDLINE | ID: mdl-30978488

ABSTRACT

The time-temperature superposition principle (TTSP) was applied to the destabilization kinetics of a pharmaceutical emulsion. The final goal of this study is to predict precisely the emulsion stability after long-term storage from the short-period accelerated test using TTSP. As the model emulsion, a cream preparation that is clinically used for the treatment of pruritus associated with chronic kidney disease was tested. After storage at high temperatures ranging from 30 to 45 °C for designated periods, the emulsion state was monitored using magnetic resonance imaging, and then the phase separation behaviors observed were analyzed according to the Arrhenius approach applying TTSP. The Arrhenius plot showed a biphasic change around 35 °C, indicating that the separation behaviors of the sample were substantially changed between the lower (30-35 °C) and higher (35-45 °C) temperature ranges. This study also monitored the coalescence behavior using a backscattered light measurement. The experiment verified that the destabilization was initiated by coalescence of oil droplets and then it eventually led to obvious phase separation via creaming. Furthermore, we note the coalescence kinetics agreed well with the phase separation kinetics. Therefore, in the case of the sample emulsion, the coalescence behavior has a dominant influence on the destabilization process. This study offers a profound insight into the destabilization process of pharmaceutical emulsions and demonstrates the promising applicability of TTSP to pharmaceutical research.


Subject(s)
Emulsions/chemistry , Skin Cream/chemistry , Camphor/chemistry , Diphenhydramine/chemistry , Drug Stability , Ethanol/chemistry , Kinetics , Mentha , Menthol/chemistry , Plant Oils/chemistry , Temperature , Thymol/chemistry , Time Factors
11.
Int J Pharm ; 558: 351-356, 2019 Mar 10.
Article in English | MEDLINE | ID: mdl-30641183

ABSTRACT

The purpose of this study was to explore the potential of a quantitative structure-property relationship (QSPR) model to predict tablet density. First, we calculated 3381 molecular descriptors for 81 active pharmaceutical ingredients (API). Second, we obtained data that were merged with a dataset including powder properties that we had constructed previously. Next, we prepared 81 types of tablet, each containing API, microcrystalline cellulose, and magnesium stearate using direct compression at 120, 160, and 200 MPa, and measured the tablet density. Finally, we applied the boosted-tree machine learning approach to construct a QSPR model and to identify crucial factors from the large complex dataset. The QSPR model achieved statistically good performance. A sensitivity analysis of the QSPR model revealed that molecular descriptors related to the average molecular weight and electronegativity of the API were crucial factors in tablet density, whereas the effects of powder properties were relatively insignificant. Moreover, we found that these descriptors had a positive linear relationship with tablet density. This study indicates that a QSPR approach is possibly useful for in silico prediction of tablet density for tablets prepared using more than a threshold compression pressure, and to allow a deeper understanding of tablet density.


Subject(s)
Models, Chemical , Quantitative Structure-Activity Relationship , Tablets/chemistry , Cellulose/chemistry , Computer Simulation , Excipients/chemistry , Stearic Acids/chemistry
12.
Chem Pharm Bull (Tokyo) ; 66(10): 959-966, 2018.
Article in English | MEDLINE | ID: mdl-30270242

ABSTRACT

Although many in silico models were reported to predict the skin permeation of drugs from aqueous solutions, few studies were founded on the in silico estimation models for the skin permeation of drugs from neat oil formulations and o/w emulsions. In the present study, the cumulative amount of a model lipophilic drug, flurbiprofen (FP), that permeated through skin was determined from 12 different kinds of ester oils (Qoil) and an in silico model was developed for predicting the skin permeation of FP from these ester oils. Thus, the obtained Qoil values were well predicted with the FP solubility in the oils (Soil), the amount of FP uptake into the stratum corneum (SCoil) and molecular descriptors of dipolarity/polarizability (π2H) and molecular density. This model suggests that the thermodynamic activities of FP both in the formulations and skin are the key factors for predicting the skin permeation of FP from the ester oils. In addition, a high linear relationship was observed in the double-logarithm plots between the Qoil and the cumulative amount of FP permeated through skin from 20% ester oil in water emulsion (Qemul20%). Furthermore, the skin permeations of FP from 5 and 10% ester oil in water emulsions, Qemul5% and Qemul10%, respectively, were also predicted by the horizontal translation of the y-axis intercept of the liner equation for the relation between the Qoil and Qemul20%. These prediction methods must be helpful for designing topical oily and/or o/w emulsion formulations having suitable and high skin permeation rate of lipophilic drugs.


Subject(s)
Esters/chemistry , Flurbiprofen/metabolism , Plant Oils/chemistry , Skin/metabolism , Animals , Ear , Emulsions/chemistry , Flurbiprofen/chemistry , Skin Absorption , Solubility , Swine , Water/chemistry
13.
Langmuir ; 34(40): 12093-12099, 2018 10 09.
Article in English | MEDLINE | ID: mdl-30217112

ABSTRACT

The purpose of the present study is to demonstrate the applicability of magnetic resonance imaging, especially T2 relaxation time mapping, for nondestructive monitoring of the dispersion state of nanoparticles (NPs) in concentrated suspensions. TiO2 15-nm-diameter NPs, for use in sunscreen lotion products, were examined as a test NP. First, this study investigated whether T2 is sensitive to the NP concentration. In experiments with pulsed nuclear magnetic resonance on TiO2 NP suspensions with different organic solvents (ethanol, acetone, and decamethylcyclopentasiloxane), the T2 of each solvent varied in the suspensions according to the NP concentration. This study also confirmed that T2 mapping was effective for visualizing differences in NP concentration. Subsequently, gravitational sedimentation of the test suspensions was investigated. T2 mapping exhibited better detection sensitivity to sedimentation occurring in concentrated suspensions than visual observation, as it enabled the detection of changes in NP distributions that could not be visible to the naked eye. In addition, measurements of backscattered light enabled the full understanding of the dispersion stability of the TiO2 NPs in each solvent. Finally, the present study evaluated the centrifuge sedimentation of a commercial TiO2 NP suspension. T2 mapping clearly showed the complicated sedimentation behavior induced by the centrifugation treatment. The simulated fluid flow was consistent with the particle distribution in the centrifuged sample; thus, the sedimentation was believed to have developed in accordance with the vorticity generated by the centrifugation.

14.
Chem Pharm Bull (Tokyo) ; 66(7): 727-731, 2018.
Article in English | MEDLINE | ID: mdl-29962456

ABSTRACT

The mechanical strain distribution of scored tablets was simulated using the finite element method (FEM). The score was fabricated as a triangular runnel with the pole on the top surface of flat tablets. The effect of diametral compression on the tablet surface strain was evaluated by changing the angle between the scored line and the diametral compression axis. Ten types of granules were prepared according to an extreme vertices design. Young's modulus and the Poisson ratio for the model powder bed were measured as elastic parameters. The FEM simulation was then applied to the scored tablets represented as a continuous elastic model. Strain distributions in the inner structure of the tablets were simulated after the application of external force. The maximum principal strain (ε1) value was obtained with tablets containing a large amount of corn starch, in all scored line positions. In contrast, the ε1 value of the tablets containing a large amount of microcrystalline cellulose was minimal. The adequacy of the simulation was evaluated by experiments with scored tablets. The results indicated a fairly good agreement between the FEM simulation and experiments. Moreover, it was found that the ε1 value correlated negatively with the value of tablet hardness. These results suggest that the FEM simulation was advantageous for designing scored tablets.


Subject(s)
Drug Design , Finite Element Analysis , Stress, Mechanical , Tablets/chemical synthesis , Surface Properties , Tablets/chemistry
15.
Chem Pharm Bull (Tokyo) ; 66(7): 748-756, 2018 Jul 01.
Article in English | MEDLINE | ID: mdl-29743471

ABSTRACT

Direct compression is a popular choice as it provides the simplest way to prepare the tablet. It can be easily adopted when the active pharmaceutical ingredient (API) is unstable in water or to thermal drying. An optimal formulation of preliminary mixed powders (premix powders) is beneficial if prepared in advance for tableting use. The aim of this study was to find the optimal formulation of the premix powders composed of lactose (LAC), cornstarch (CS), and microcrystalline cellulose (MCC) by using statistical techniques. Based on the "Quality by Design" concept, a (3,3)-simplex lattice design consisting of three components, LAC, CS, and MCC was employed to prepare the model premix powders. Response surface method incorporating a thin-plate spline interpolation (RSM-S) was applied for estimation of the optimum premix powders for tableting use. The effect of tablet shape identified by the surface curvature on the optimization was investigated. The optimum premix powder was effective when the premix was applied to a small quantity of API, although the function of premix was limited in the case of the formulation of large amount of API. Statistical techniques are valuable to exploit new functions of well-known materials such as LAC, CS, and MCC.


Subject(s)
Cellulose/chemistry , Lactose/chemistry , Powders/chemistry , Starch/chemistry , Drug Compounding , Powders/chemical synthesis , Surface Properties , Tablets/chemical synthesis , Tablets/chemistry , Tensile Strength
16.
Biol Pharm Bull ; 41(5): 811-814, 2018.
Article in English | MEDLINE | ID: mdl-29709919

ABSTRACT

In previous studies we showed that the complexation hydrogels based in poly(methacrylic acid-g-ethylene glycol) [P(MAA-g-EG)] rapidly release insulin in the intestine owing to their pH-dependent complexation properties; they also exhibit a high insulin-loading efficiency, enzyme-inhibiting properties, and mucoadhesive characteristics. Cell-penetrating peptides (CPPs), such as oligoarginines [hexa-arginine (R6), comprising six arginine residues], have been employed as useful tools for the oral delivery of therapeutic macromolecules. The aim of our study was to investigate the combination strategy of using P(MAA-g-EG) hydrogels with R6-based CPPs to improve the intestinal absorption of insulin. A high efficiency of loading into crosslinked P(MAA-g-EG) hydrogels was observed for insulin (96.1±1.4%) and R6 (46.6±3.8%). In addition, immediate release of the loaded insulin and R6 from these hydrogels was observed at pH 7.4 (80% was released in approximately 30 min). Consequently, a strong hypoglycemic response was observed (approximately 18% reduction in blood glucose levels) accompanied by an improvement in insulin absorption after the co-administration of insulin-loaded particles (ILP) and R6-loaded particles (ALP) into closed rat ileal segments compared with that after ILP administration alone. These results indicate that the combination of P(MAA-g-EG) hydrogels with CPPs may be a promising strategy for the oral delivery of various insulin preparations as an alternative to conventional parenteral routes.


Subject(s)
Cell-Penetrating Peptides/administration & dosage , Drug Carriers/administration & dosage , Hydrogels/administration & dosage , Hypoglycemic Agents/administration & dosage , Insulin/administration & dosage , Oligopeptides/administration & dosage , Administration, Oral , Animals , Blood Glucose/analysis , Cell-Penetrating Peptides/chemistry , Cell-Penetrating Peptides/pharmacokinetics , Drug Carriers/chemistry , Drug Carriers/pharmacokinetics , Drug Liberation , Ethylene Glycol/chemistry , Ethylene Glycol/pharmacokinetics , Hydrogels/chemistry , Hydrogels/pharmacokinetics , Hypoglycemic Agents/blood , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/pharmacokinetics , Ileum/metabolism , Insulin/blood , Insulin/chemistry , Insulin/pharmacokinetics , Intestinal Absorption , Male , Oligopeptides/chemistry , Oligopeptides/pharmacokinetics , Polymethacrylic Acids/chemistry , Polymethacrylic Acids/pharmacokinetics , Rats, Wistar
17.
Chem Pharm Bull (Tokyo) ; 66(5): 541-547, 2018.
Article in English | MEDLINE | ID: mdl-29710049

ABSTRACT

The influence of granule size on simulation parameters and residual shear stress in tablets was determined by combining the finite element method (FEM) into the design of experiments (DoE). Lactose granules were prepared using a wet granulation method with a high-shear mixer and sorted into small and large granules using sieves. To simulate the tableting process using the FEM, parameters simulating each granule were optimized using a DoE and a response surface method (RSM). The compaction behavior of each granule simulated by FEM was in reasonable agreement with the experimental findings. Higher coefficients of friction between powder and die/punch (µ) and lower by internal friction angle (αy) were generated in the case of small granules, respectively. RSM revealed that die wall force was affected by αy. On the other hand, the pressure transmissibility rate of punches value was affected not only by the αy value, but also by µ. The FEM revealed that the residual shear stress was greater for small granules than for large granules. These results suggest that the inner structure of a tablet comprising small granules was less homogeneous than that comprising large granules. To evaluate the contribution of the simulation parameters to residual stress, these parameters were assigned to the fractional factorial design and an ANOVA was applied. The result indicated that µ was the critical factor influencing residual shear stress. This study demonstrates the importance of combining simulation and statistical analysis to gain a deeper understanding of the tableting process.


Subject(s)
Finite Element Analysis , Lactose/chemistry , Molecular Dynamics Simulation , Stearic Acids/chemistry , Particle Size , Surface Properties , Tablets/chemistry
18.
Drug Dev Ind Pharm ; 44(7): 1090-1098, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29376430

ABSTRACT

OBJECTIVES: The aim of this study was to explore the potential of boosted tree (BT) to develop a correlation model between active pharmaceutical ingredient (API) characteristics and a tensile strength (TS) of tablets as critical quality attributes. METHODS: First, we evaluated 81 kinds of API characteristics, such as particle size distribution, bulk density, tapped density, Hausner ratio, moisture content, elastic recovery, molecular weight, and partition coefficient. Next, we prepared tablets containing 50% API, 49% microcrystalline cellulose, and 1% magnesium stearate using direct compression at 6, 8, and 10 kN, and measured TS. Then, we applied BT to our dataset to develop a correlation model. Finally, the constructed BT model was validated using k-fold cross-validation. RESULTS: Results showed that the BT model achieved high-performance statistics, whereas multiple regression analysis resulted in poor estimations. Sensitivity analysis of the BT model revealed that diameter of powder particles at the 10th percentile of the cumulative percentage size distribution was the most crucial factor for TS. In addition, the influences of moisture content, partition coefficients, and modal diameter were appreciably meaningful factors. CONCLUSIONS: This study demonstrates that BT model could provide comprehensive understanding of the latent structure underlying APIs and TS of tablets.


Subject(s)
Pharmaceutical Preparations/chemistry , Tablets/chemistry , Tensile Strength/drug effects , Cellulose/chemistry , Drug Compounding/methods , Excipients/chemistry , Molecular Weight , Particle Size , Powders/chemistry , Pressure , Stearic Acids/chemistry
19.
AAPS PharmSciTech ; 19(3): 1093-1104, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29168128

ABSTRACT

This study aimed to investigate the effect of low-frequency sonophoresis (SN) and limonene-containing PEGylated liposomes (PL) on the transdermal delivery of galantamine HBr (GLT). To evaluate the skin penetration mechanism, confocal laser scanning microscopy (CLSM), Fourier transform infrared spectroscopy (FTIR), and differential scanning calorimetry (DSC) were employed. The application of SN led to more GLT penetration into and through the skin than GLT solution alone. The liposomes also improved GLT permeation, and 2% limonene-containing PL (PL-LI2%) exhibited the highest GLT permeation, followed by PL-LI1%, PL-LI0.1%, and PL. The CLSM images of PL-LI2% resulted in the highest fluorescence intensity of fluorescent hydrophilic molecules in the deep skin layer, and the rhodamine PE-labeled liposome membrane was distributed in the intercellular region of the stratum corneum (SC). PL-LI2% induced significant changes in intercellular lipids in the SC, whereas SN had no effect on intercellular lipids of the SC. DSC thermograms showed that the greatest decrease in the lipid transition temperature occurred in PL-LI2%-treated SC. SN might improve drug permeation through an intracellular pathway, while limonene-containing liposomes play an important role in delivering GLT through an intercellular pathway by increasing the fluidity of intercellular lipids in the SC. Moreover, a small vesicle size and high membrane fluidity might enhance the transportation of intact vesicles through the skin.


Subject(s)
Galantamine/administration & dosage , Galantamine/metabolism , Skin/metabolism , Administration, Cutaneous , Animals , Cyclohexenes/chemistry , Epidermis/metabolism , Limonene , Liposomes/chemistry , Mice , Polyethylene Glycols/chemistry , Skin Absorption , Terpenes/chemistry , Ultrasonics
20.
PLoS One ; 12(10): e0186000, 2017.
Article in English | MEDLINE | ID: mdl-29016635

ABSTRACT

BACKGROUND: Co-infections with human herpesvirus (HHV) have been associated with residual chronic inflammation in antiretroviral (ART)-treated human immunodeficiency virus (HIV)-infected individuals. However, the role of HHV in modulating the tryptophan-kynurenine pathway and clinical outcomes in HIV-infected individuals is poorly understood. Thus, we investigated the seroprevalence of four common HHVs among treated HIV-infected participants and their impact on kynurenine/tryptophan (K/T) ratio and long-term CD4 T-cell recovery in HIV/HHV co-infected participants. METHOD: In this cross-sectional study, HIV-infected participants receiving suppressive ART for a minimum of 12 months were recruited from the University Malaya Medical Centre (UMMC), Malaysia. Stored plasma was analyzed for CMV, VZV, HSV-1 and HSV-2 IgG antibody levels, immune activation markers (interleukin-6, interferon-γ, neopterin and sCD14), kynurenine and tryptophan concentrations. The influence of the number of HHV co-infection and K/T ratio on CD4 T-cell recovery was assessed using multivariate Poisson regression. RESULTS: A total of 232 HIV-infected participants were recruited and all participants were seropositive for at least one HHV; 96.1% with CMV, 86.6% with VZV, 70.7% with HSV-1 and 53.9% with HSV-2. K/T ratio had a significant positive correlation with CMV (rho = 0.205, p = 0.002), VZV (rho = 0.173, p = 0.009) and a tendency with HSV-2 (rho = 0.120, p = 0.070), with CMV antibody titer demonstrating the strongest modulating effect on K/T ratio among the four HHVs assessed in SOM analysis. In multivariate analysis, higher K/T ratio (p = 0.03) and increasing number of HHV co-infections (p<0.001) were independently associated with poorer CD4 T-cell recovery following 12 months of ART initiation. CONCLUSION: Multiple HHV co-infections are common among ART-treated HIV-infected participants in the developing country setting and associated with persistent immune activation and poorer CD4 T-cell recovery.


Subject(s)
Coinfection/epidemiology , HIV Infections/epidemiology , Herpes Simplex/epidemiology , Inflammation/epidemiology , Adult , Antibodies, Viral/blood , Antiretroviral Therapy, Highly Active , CD4-Positive T-Lymphocytes/immunology , Coinfection/blood , Coinfection/immunology , Coinfection/virology , Female , HIV Infections/blood , HIV Infections/immunology , HIV Infections/virology , Herpes Simplex/blood , Herpes Simplex/immunology , Herpes Simplex/virology , Herpesvirus 1, Human/isolation & purification , Herpesvirus 1, Human/pathogenicity , Humans , Immune Reconstitution Inflammatory Syndrome/blood , Immune Reconstitution Inflammatory Syndrome/immunology , Immune Reconstitution Inflammatory Syndrome/metabolism , Immune Reconstitution Inflammatory Syndrome/virology , Inflammation/blood , Inflammation/immunology , Inflammation/virology , Kynurenine/metabolism , Male , Metabolic Networks and Pathways , Seroepidemiologic Studies , Tryptophan/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...