Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
J Anal Methods Chem ; 2022: 2694545, 2022.
Article in English | MEDLINE | ID: mdl-36248057

ABSTRACT

In this study, a microscopy apparatus that can switch between the fluorescence microscopy and ultralow-frequency Raman microscopy modes was developed. The apparatus can be easily constructed by equipping a standard epi-illumination microscope with an additional port featuring a removable half mirror. Owing to the switchability, fluorescence imaging, and spectroscopy, Raman spectroscopy in the frequency range down to ∼10 cm-1 can be performed using the apparatus. To demonstrate the advantageous features of this apparatus, micron-sized crystals of perylene, which have two polymorphic forms, were analyzed. The two polymorphs were clearly identified based on their shapes, fluorescence spectra, and ultralow-frequency Raman spectra, all of which can be observed with our apparatus alone. These results indicate that the apparatus is a powerful tool for the analysis and characterization of various nano-/micron-sized crystals.

2.
Small ; 18(41): e2204500, 2022 10.
Article in English | MEDLINE | ID: mdl-36084217

ABSTRACT

Thermosalient crystals are molecular solids that exhibit explosive motions, such as sudden breaks and jumps, due to temperature-induced structural phase transitions between two polymorphs. Therefore, the development of molecular actuators with superior speed and power by deriving mechanical work from explosive motion is a fascinating concept. However, thermosalient transitions often cause crystal disintegration, which hampers repeatable phase transitions between the polymorphs. Here, it is reported that single crystal nano/microfibers of 1, 2, 4, 5-tetrabromobenzene (TBB), whose bulk crystals exhibit thermosalient behavior at ≈40 °C, can repeatedly transform between the low and high temperature polymorphs without disintegration. The structural tolerance against phase transition is attributed to the high flexibility of the nano/microfibers. It is observed that a structure consisting of a TBB fiber with both ends pinned to the substrate repeatedly buckles and straightens when the temperature is varied between 30 and 40 °C. It is demonstrated that buckling can lead to large displacement actuation as compared to a simple length change of the fiber. Moreover, the force generated by the buckling fiber is estimated and it is found that it can generate a force large enough to flick an object ≈104 times heavier than the fiber itself into the air against gravity.


Subject(s)
Hot Temperature , Mechanical Phenomena , Motion , Phase Transition , Temperature
3.
Nano Lett ; 21(14): 6064-6070, 2021 07 28.
Article in English | MEDLINE | ID: mdl-34240608

ABSTRACT

Numerous laboratories have observed random lasing from optically pumped solutions of plasmonic nanoparticles (NPs) suspended with organic dye molecules. The underlying mechanism is typically attributed to the formation of closed-loop optical cavities enabled by the large local field and scattering enhancements in the vicinity of plasmonic NPs. In this manuscript, we propose an alternative mechanism that does not directly require the plasmon resonance. We used high-speed confocal microspectroscopy to observe the photophysical dynamics of NPs in solution. Laser pulses induce the formation of microbubbles that surround and encapsulate the NPs, then sharp peaks <1.0 nm are observed that match the spectral signature of random lasing. Electromagnetic simulations indicate that ensembles of microbubbles may form optical corral containing standing wave patterns that are sufficient to sustain coherent optical feedback in a gain medium. Collectively, these results show that ensembles of plasmonic-induced bubbles can generate optical feedback and random lasing.


Subject(s)
Microbubbles , Nanoparticles , Lasers , Light
4.
Sci Rep ; 11(1): 3175, 2021 Feb 04.
Article in English | MEDLINE | ID: mdl-33542387

ABSTRACT

For decades, it has been reported that some organic crystals suddenly crack, break, or jump when they are heated from room temperature. Recently, such crystals have been intensively studied both in fundamental science and for high-speed mechanical device applications. According to these studies, the sudden crystal motions have been attributed to structural phase transitions induced by heating. Stress created by the phase transition is released through the sudden and rapid motion of the crystals. Here we report that single crystal nanofibers of coronene exhibit a new type of ultrafast motion when they are cooled from room temperature and subsequently heated to room temperature. The nanofibers make centimeter-scale jumps accompanied by surprisingly unique behaviors such as sharp bending and wriggling. We found that the motions are caused by a significantly fast structural phase transition between two polymorphs of coronene. A theoretical investigation revealed that the sudden force generated by the phase transition together with the nanoscale dimensions and elastic properties create dynamical instability in the nanofibers that results in the motions. Our finding demonstrates the novel mechanism that leads to ultrafast, large deformation of organic crystals.

5.
Opt Express ; 28(21): 31923-31931, 2020 Oct 12.
Article in English | MEDLINE | ID: mdl-33115156

ABSTRACT

We show how photoexcitation of a single plasmonic nanoparticle (NP) in solution can create a whispering-gallery-mode (WGM) droplet resonator. Small nano/microbubbles are initially formed by laser-induced heating that is localized by the plasmon resonance. Fast imaging shows that the bubbles collect and condense around the NP and form a droplet in the interior of the bubble. Droplets containing dye generated lasing modes with wavelengths that depend on the size of the droplet, refractive index of the solvent, and surrounding environment, matching the behavior of a WGM. We demonstrated this phenomenon with two kinds of Au NPs in addition to TiN NPs and observed cavity diameters as small as 4.8 µm with a free spectral range (FSR) of 12 nm. These results indicate that optical pumping of plasmonic NPs in a gain medium can generate lasing modes that are not directly associated with the plasmon cavity but can arise from its photophysical processes. This process may serve as a method to generate plasmonic/photonic optical microcavities in solution on demand at any location in a solvent using free-space coupling in/out of the cavity.

6.
Nanoscale ; 6(8): 4174-81, 2014 Apr 21.
Article in English | MEDLINE | ID: mdl-24608753

ABSTRACT

To fabricate organic nanofibers that function as active optical waveguides with semiconductor properties, a facile procedure was developed to grow single crystalline nanofibers via π-π stacking of the polycyclic aromatic molecule, coronene, through solution evaporation on a substrate. The fabricated nanofibers with millimeter-scale lengths have well-defined shapes, smooth surfaces, and low-defect structures. The nanofibers are demonstrated to function as efficient active waveguides that propagate their fluorescence (FL) along the fiber axis over their entire length. We further demonstrate that the nanofibers can be highly aligned on the substrate when solution evaporation is conducted in a magnetic field of 12 T. The mechanism of the magnetic alignment can be elucidated by considering the anisotropy of the diamagnetic susceptibility of a single coronene molecule and the crystal structure of a nanofiber. Owing to the high degree of alignment, the nanofibers rarely cross each other, allowing for measurement of the waveguiding properties of single isolated nanofibers. The nanofibers propagate their FL of λ > 500 nm with a low propagation loss of 0-3 dB per 100 µm, indicating that the nanofibers function as sub-wavelength scale, low-loss waveguides. Thus, they are promising building blocks for miniaturized optoelectronic circuits.


Subject(s)
Magnetic Fields , Nanofibers/chemistry , Polycyclic Compounds/chemistry
7.
ACS Appl Mater Interfaces ; 5(13): 6182-8, 2013 Jul 10.
Article in English | MEDLINE | ID: mdl-23802740

ABSTRACT

We fabricated micrometer-scale optical ring resonators by micromanipulation of thiacyanine (TC) dye nanofibers that propagate exciton polaritons (EPs) along the fiber axis. High mechanical flexibility of the nanofibers and a low bending loss property of EP propagation enabled the fabrication of microring resonators with an average radius (r(ave)) as small as 1.6 µm. The performances of the fabricated resonators (r(ave) = 1.6-8.9 µm) were investigated by spatially resolved microscopy techniques. The Q-factors and finesses were evaluated as Q ≈ 300-3500 and F ≈ 2-12. On the basis of the r(ave)-dependence of resonator performances, we revealed the origin of losses in the resonators. To demonstrate the applicability of the microring resonators to photonic devices, we fabricated a channel drop filter that comprises a ring resonator (r(ave) = 3.9 µm) and an I/O bus channel nanofiber. The device exhibited high extinction ratios (4-6 dB) for its micrometer-scale dimensions. Moreover, we successfully fabricated a channel add filter comprising a ring resonator (r(ave) = 4.3 µm) and two I/O bus channel nanofibers. Our results demonstrated a remarkable potential for the application of TC nanofibers to miniaturized photonic circuit devices.

9.
Rev Sci Instrum ; 82(1): 013108, 2011 Jan.
Article in English | MEDLINE | ID: mdl-21280817

ABSTRACT

An experimental setup to measure the effects of a high magnetic field on the structure and decay dynamics of molecules is designed and constructed. A vacuum chamber is mounted in the bore of a superconducting magnet. A molecular beam passes in the chamber. Pulsed laser light excites the molecules in the field. The parent or fragment ions are extracted by an electric field parallel to the magnetic field. They are detected by a microchannel plate. Their mass and charge are determined by the time-of-flight method. The performance of the setup was examined using resonance-enhanced two-photon ionization through the X(2) Π-A(2)Σ(+) transition of nitric oxide (NO) molecules. The ions were detected with sufficient mass resolution to discriminate the species in a field of up to 10 T. This is the first experiment to succeed in the mass-selective detection of ions by the time-of-flight method in a high magnetic field. By measuring NO(+) ion current as a function of the laser frequency, the X(2)Π-A(2) Σ(+) rotational transition lines, separated clearly from the background noise, were observed in fields of up to 10 T. From the relative strengths of the transition lines, the ion detection efficiency was determined as a function of the magnetic field strength. This setup was shown to be applicable in a field higher than 10 T. The Landau levels of molecules were successfully observed to demonstrate the setup.

10.
Phys Rev Lett ; 105(6): 067401, 2010 Aug 06.
Article in English | MEDLINE | ID: mdl-20868009

ABSTRACT

We report propagation of exciton polaritons (EPs) in photoexcited nanofibers of thiacyanine dye over a few hundred micrometers at room temperature. We determine the complex refractive index along the nanofibers by fluorescence microscopy measurements on single nanofibers and observe its anomalous behavior due to the EP effect. The longitudinal-transverse splitting energy (ΔE(L-T)) is evaluated to be ∼1 eV. The large ΔE(L-T) and waveguide function of the nanofibers allow a millimeter propagation of EPs at room temperature, which is hardly realized in other systems.

11.
Langmuir ; 22(18): 7600-4, 2006 Aug 29.
Article in English | MEDLINE | ID: mdl-16922538

ABSTRACT

To determine the internal molecular arrangement of organic dye aggregates, a technique for observing the fluorescence microscope image of a solution consisting of dye aggregates in a magnetic field was developed. Using this technique, the fluorescence image of meso-tetrakis (4-sulfonatophenyl) porphine (TPPS) J-aggregates in a solution in a magnetic field of 10 T was observed. It was observed that individual rod-shaped TPPS aggregates (4-20 microm in length) were aligned parallel to the applied field. The polarized absorption spectra of the sample solution were also measured in the fields of up to 10 T. The spectra show the magnetic field dependence of the J-band intensity, reflecting the magnetic alignment of the aggregates. On the basis of the magnetic and optical properties obtained by the experiments, it was proposed that TPPS J-aggregates have a tube-like structure and are constructed from one-dimensional molecular arrays that are stacked parallel to the long axis of the tube.

12.
Nano Lett ; 5(7): 1293-6, 2005 Jul.
Article in English | MEDLINE | ID: mdl-16178226

ABSTRACT

Fiber-shaped H-aggregates with lengths of up to 300 microm are synthesized by self-assembly of thiacyanine (TC) dye molecules in solution. Photoluminescence (PL) images and spatially resolved PL spectra of the fibers that are transferred onto a glass substrate reveal that the fibers act as single-mode optical waveguides that propagate PL in the range of 520 to 560 nm over 250 microm without any loss.


Subject(s)
Carbocyanines/chemistry , Crystallization/methods , Fiber Optic Technology/instrumentation , Nanostructures/chemistry , Nanostructures/ultrastructure , Nanotechnology/instrumentation , Carbocyanines/analysis , Colloids/analysis , Colloids/chemistry , Equipment Design , Equipment Failure Analysis , Fiber Optic Technology/methods , Materials Testing , Nanostructures/analysis , Nanotechnology/methods , Organic Chemicals/chemistry , Particle Size , Solutions
13.
Chem Commun (Camb) ; (20): 2272-3, 2004 Oct 21.
Article in English | MEDLINE | ID: mdl-15489976

ABSTRACT

Highly oriented fiber-shaped J-aggregates of pseudoisocyanine (PIC) molecules were prepared by simply growing the aggregates in a narrow glass cell, which allows evaporation of the solution in one direction.

14.
Chemistry ; 10(4): 831-9, 2004 Feb 20.
Article in English | MEDLINE | ID: mdl-14978810

ABSTRACT

The formation of micrometer-sized, highly ordered porphyrin rings on surfaces has been investigated. The porphyrin-based nanoarchitectures are formed by deposition from evaporating solutions through a surface dewetting process which can be tuned by variations in the substitution pattern of the molecules used, the coating of the surface and the conditions under which the evaporation takes place. Control over the combined self-assembly and surface dewetting results in nanorings possessing a defined internal architecture. The ordering of the molecules within the rings has been studied by a variety of microscopy techniques (TEM, AFM, fluorescence microscopy) and the exact ordering of the porphyrins within the rings has been quantified.

SELECTION OF CITATIONS
SEARCH DETAIL
...