Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Drug Metab Dispos ; 39(9): 1495-502, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21646435

ABSTRACT

Raloxifene is extensively glucuronidated in humans, effectively reducing its oral bioavailability (2%). It was also reported to be glucuronidated in preclinical animals, but its effects on the oral bioavailability have not been fully elucidated. In the present study, raloxifene and its glucuronides in the portal and systemic blood were monitored in Gunn rats deficient in UDP-glucuronosyltransferase (UGT) 1A, Eisai hyperbilirubinemic rats (EHBRs), which hereditarily lack multidrug resistance-associated protein (MRP) 2, and wild-type rats after oral administration. The in vitro-in vivo correlation (IVIVC) of four UGT substrates (raloxifene, biochanin A, gemfibrozil, and mycophenolic acid) in rats was also evaluated. In Gunn rats, the product of fraction absorbed and intestinal availability and hepatic availability of raloxifene were 0.63 and 0.43, respectively; these values were twice those observed in wild-type Wistar rats, indicating that raloxifene was glucuronidated in both the liver and intestine. The ratio of glucuronides to unchanged drug in systemic blood was substantially higher in EHBRs (129-fold) than in the wild-type Sprague-Dawley rats (10-fold), suggesting the excretion of raloxifene glucuronides caused by MRP2. The IVIVC of the other UGT substrates in rats displayed a good relationship, but the oral clearance values of raloxifene and biochanin A, which were extensively glucuronidated by rat intestinal microsomes, were higher than the predicted clearances using rat liver microsomes, suggesting that intestinal metabolism may be a great contributor to the first-pass effect. Therefore, evaluation of intestinal and hepatic glucuronidation for new chemical entities is important to improve their pharmacokinetic profiles.


Subject(s)
Glucuronides/metabolism , Intestinal Mucosa/metabolism , Raloxifene Hydrochloride/pharmacokinetics , Animals , Biological Availability , Dogs , Drug Discovery/methods , Glucuronosyltransferase/metabolism , Liver/metabolism , Macaca fascicularis , Male , Microsomes/metabolism , Multidrug Resistance-Associated Protein 2 , Multidrug Resistance-Associated Proteins/metabolism , Rats , Rats, Gunn , Rats, Sprague-Dawley , Rats, Wistar
2.
Jpn J Cancer Res ; 93(2): 143-50, 2002 Feb.
Article in English | MEDLINE | ID: mdl-11856477

ABSTRACT

Bile acids enhance colon carcinogenesis in animal models, whereas ursodeoxycholic acid (UDCA) suppresses it. Nonsteroid anti-inflammatory drugs prevent colon cancer development in animals and humans. The aim of the present study was to explore the inhibitory effect of UDCA conjugate with 5-aminosalicylic acid (5-ASA), UDCA-5-ASA conjugate (UDCA-5-ASA), against colon carcinogenesis in rats. One-hundred-and-twenty-nine 7-week-old F344 rats received an intrarectal instillation of 2 mg of N-methylnitrosourea 3 times a week for 3 weeks, and were fed a 0% (control), 0.11% or 0.02% UDCA-5-ASA-, 0.08% UDCA- or 0.03% 5-ASA-supplemented diet for the next 27 weeks. The test diets contained an equimolar amount of a test agent, 2.0 mmol/kg diet, except for the 0.02% UDCA-5-ASA diet. The tumor incidence and the mean number of tumors/rat at week 30 were significantly lower and smaller in the UDCA-5-ASA diet groups, 48% and 0.7 in both, and marginally lower in the UDCA and 5-ASA diet groups, 56% and 0.9, and 64% and 0.8, compared to the control group, 83% and 1.3. All the tumors were polypoid in shape, and most of them were differentiated adenocarcinomas restricted to the mucosa or submucosa. An analysis by HPLC for bile acids and 5-ASA in the feces and serum collected at week 30 showed that one-half of ingested UDCA-5-ASA was cleaved into UDCA and 5-ASA in the colon. Thus, the two moieties may have independently affected the promotion stage of carcinogenesis.


Subject(s)
Anticarcinogenic Agents/pharmacology , Colonic Neoplasms/prevention & control , Mesalamine/pharmacology , Ursodeoxycholic Acid/pharmacology , Animals , Bile Acids and Salts/analysis , Colonic Neoplasms/chemically induced , Female , Mesalamine/pharmacokinetics , Methylnitrosourea , Precancerous Conditions/chemically induced , Precancerous Conditions/prevention & control , Rats , Rats, Inbred F344 , Ursodeoxycholic Acid/pharmacokinetics
SELECTION OF CITATIONS
SEARCH DETAIL
...