Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Neurosci Lett ; 410(3): 193-7, 2006 Dec 27.
Article in English | MEDLINE | ID: mdl-17101218

ABSTRACT

Endokinins are novel mammalian tachykinin peptides designated from a human preprotachykinin gene and consist of endokinin A (EKA), endokinin B (EKB), endokinin C (EKC) and endokinin D (EKD). A representative of the tachykinin peptide is substance P (SP), which functions as a pain modulator or transmitter and contributes to pain processing; however, little is known about the function of endokinins in pain processing. Therefore, we evaluated the effects of EKA/B (using the common C-terminal decapeptide in EKA and EKB) and EKC/D (using the common C-terminal duodecapeptide in EKC and EKD) on pain processing in rats. Intrathecal administration of 10(-3) M (10 nmol) EKA/B evoked pain-related behavior such as scratching while 10(-3) M EKC/D administration did not. This induction of scratching behavior following EKA/B administration was suppressed by pretreatment with an NK1 receptor antagonist. In addition to the induction of scratching behavior, intrathecal administration of 10(-7) - 10(-4) M (1 pmol-1 nmol) EKA/B decreased the latency of the paw withdrawal response to noxious thermal stimulation, whereas there was little effect of EKC/D administration on the latency of the withdrawal response. This effect of EKA/B was also suppressed by pretreatment with NK1 receptor antagonists. These results indicate that intrathecal administration of EKA/B but not EKC/D evokes scratching behavior and thermal hyperalgesia through the NK1 receptor.


Subject(s)
Behavior, Animal/drug effects , Hyperalgesia/chemically induced , Pain/chemically induced , Peptides/administration & dosage , Tachykinins/chemistry , Animals , Dose-Response Relationship, Drug , Drug Interactions , Injections, Spinal/methods , Male , Pain/physiopathology , Pain Measurement/methods , Physalaemin/administration & dosage , Physalaemin/analogs & derivatives , Quinuclidines/administration & dosage , Rats , Rats, Sprague-Dawley , Reaction Time/drug effects , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...