Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev E ; 107(3-1): 034201, 2023 Mar.
Article in English | MEDLINE | ID: mdl-37073034

ABSTRACT

A density oscillator is a fluid system in which oscillatory flow occurs between different density fluids through the pore connecting them. We investigate the synchronization in coupled density oscillators using two-dimensional hydrodynamic simulation and analyze the stability of the synchronous state based on the phase reduction theory. Our results show that the antiphase, three-phase, and 2-2 partial-in-phase synchronization modes spontaneously appear as stable states in two, three, and four coupled oscillators, respectively. The phase dynamics of coupled density oscillators is interpreted with their sufficiently large first Fourier components of the phase coupling function.

2.
Phys Rev E ; 101(4-1): 042216, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32422717

ABSTRACT

A density oscillator exhibits limit-cycle oscillations driven by the density difference of the two fluids. We performed two-dimensional hydrodynamic simulations with a simple model and reproduced the oscillatory flow observed in experiments. As the density difference is increased as a bifurcation parameter, a damped oscillation changes to a limit-cycle oscillation through a supercritical Hopf bifurcation. We estimated the critical density difference at the bifurcation point and confirmed that the period of the oscillation remains finite even around the bifurcation point.

SELECTION OF CITATIONS
SEARCH DETAIL
...