Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Biopreserv Biobank ; 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38526566

ABSTRACT

Background: The population of blast cells among peripheral blood mononuclear cells (PBMCs) obtained from patients is a desirable specimen for analyzing gene expression in diseases including acute myeloid leukemia. Although the enrichment of blast cells often needs to be performed at a central laboratory, acceptable conditions for sample transport from clinical sites remain to be established. Methods: We evaluated storage temperature, duration, and tube type before initiating sample processing for the analysis of cluster of differentiation (CD)33+ myeloid cells among PBMCs as an alternative to CD34+/CD33+ blast cells. Results: CD33+ myeloid cells were successfully purified by MACS. The cell viability and the RNA integrity were sustained during storage up to 48 hours before sample processing. Storage at 4°C had minimal effects on gene expression, whereas storage at room temperature induced the senescence pathway, characterized by the expression of stress-inducible genes. A CPT tube was also better than an ethylenediaminetetraacetic acid tube for minimizing gene expression change. Conclusions: Our study provided important clues for establishing a sample handling approach for gene expression analysis with purified cell fractions from human PBMCs. To keep the variation of gene expression to a minimum, samples should be delivered at 4°C within 48 hours before processing.

2.
Drug Metab Dispos ; 47(11): 1270-1280, 2019 11.
Article in English | MEDLINE | ID: mdl-31511257

ABSTRACT

Endogenous substrates are emerging biomarkers for drug transporters, which serve as surrogate probes in drug-drug interaction (DDI) studies. In this study, the results of metabolome analysis using wild-type and Oct1/2 double knockout mice suggested that N 1-methyladenosine (m1A) was a novel organic cation transporter (OCT) 2 substrate. An in vitro transport study revealed that m1A is a substrate of mouse Oct1, Oct2, Mate1, human OCT1, OCT2, and multidrug and toxin exclusion protein (MATE) 2-K, but not human MATE1. Urinary excretion accounted for 77% of the systemic elimination of m1A in mice. The renal clearance (46.9 ± 4.9 ml/min per kilogram) of exogenously given m1A was decreased to near the glomerular filtration rates by Oct1/2 double knockout or Mate1 inhibition by pyrimethamine (16.6 ± 2.6 and 24.3 ± 0.6 ml/min per kilogram, respectively), accompanied by significantly higher plasma concentrations. In vivo inhibition of OCT2/MATE2-K by a single dose of 7-[(3R)-3-(1-aminocyclopropyl)pyrrolidin-1-yl]-1-[(1R,2S)-2-fluorocyclopropyl]-8-methoxy-4-oxoquinoline-3-carboxylic acid in cynomolgus monkeys resulted in the elevation of the area under the curve of m1A (1.72-fold) as well as metformin (2.18-fold). The plasma m1A concentration profile showed low diurnal and interindividual variation in healthy volunteers. The renal clearance of m1A in younger (21-45 year old) and older (65-79 year old) volunteers (244 ± 58 and 169 ± 22 ml/min per kilogram, respectively) was about 2-fold higher than the creatinine clearance. The renal clearances of m1A and creatinine were 31% and 17% smaller in older than in younger volunteers. Thus, m1A could be a surrogate probe for the evaluation of DDIs involving OCT2/MATE2-K. SIGNIFICANCE STATEMENT: Endogenous substrates can serve as surrogate probes for clinical drug-drug interaction studies involving drug transporters or enzymes. In this study, m1A was found to be a novel substrate of renal cationic drug transporters OCT2 and MATE2-K. N 1-methyladenosine was revealed to have some advantages compared to other OCT2/MATE substrates (creatinine and N 1-methylnicotinamide). The genetic or chemical impairment of OCT2 or MATE2-K caused a significant increase in the plasma m1A concentration in mice and cynomolgus monkeys due to the high contribution of tubular secretion to the net elimination of m1A. The plasma m1A concentration profile showed low diurnal and interindividual variation in healthy volunteers. Thus, m1A could be a better biomarker of variations in OCT2/MATE2-K activity caused by inhibitory drugs.


Subject(s)
Adenosine/analogs & derivatives , Drug Interactions , Kidney/metabolism , Organic Cation Transport Proteins/physiology , Adenosine/metabolism , Adult , Aged , Animals , Biomarkers , Creatinine/metabolism , HEK293 Cells , Humans , Macaca fascicularis , Male , Mice , Mice, Inbred ICR , Middle Aged
3.
J Pharm Sci ; 108(8): 2756-2764, 2019 08.
Article in English | MEDLINE | ID: mdl-30905707

ABSTRACT

The present study examined the significance of enterohepatic circulation and the effect of rifampicin [an inhibitor of organic anion-transporting polypeptide 1B (OATP1B)] on the plasma concentrations of bile acid-O-sulfates (glycochenodeoxycholate-O-sulfate, lithocholate-O-sulfate, glycolithocholate-O-sulfate, and taurolithocholate-O-sulfate) in monkeys and human liver-transplanted chimeric mice (PXB mouse). Rifampicin significantly increased the area under the curve of bile acid-O-sulfates in monkeys (13-69 times) and PXB mice (13-25 times) without bile flow diversion. Bile flow diversion reduced the concentration of plasma bile acid-O-sulfates under control conditions in monkeys and the concentration of plasma glycochenodeoxycholate-O-sulfate in PXB mice. It also diminished diurnal variation of plasma lithocholate-O-sulfate, glycolithocholate-O-sulfate, and taurolithocholate-O-sulfate in PXB mice under control conditions. Bile flow diversion did not affect the plasma concentration of bile acid-O-sulfates in monkeys and PXB mice treated with rifampicin. Plasma coproporphyrin I and III levels were constant in monkeys throughout the study, even with bile flow diversion. This study demonstrated that bile acid-O-sulfates are endogenous OATP1B biomarkers in monkeys and PXB mice. Enterohepatic circulation can affect the baseline levels of plasma bile acid-O-sulfates and modify the effect of OATP1B inhibition.


Subject(s)
Glycocholic Acid/analogs & derivatives , Lithocholic Acid/analogs & derivatives , Liver-Specific Organic Anion Transporter 1/antagonists & inhibitors , Rifampin/pharmacology , Taurolithocholic Acid/analogs & derivatives , Animals , Glycocholic Acid/blood , Humans , Lithocholic Acid/blood , Liver/metabolism , Liver Transplantation , Macaca fascicularis , Male , Mice , Rifampin/administration & dosage , Taurolithocholic Acid/blood
4.
Pharm Res ; 36(4): 55, 2019 02 21.
Article in English | MEDLINE | ID: mdl-30790061

ABSTRACT

There was a miscalculation of coproporphyrin I AUC0-24h in the published article (Volume 35, Number 7). After the correction of AUC0-24h, AUC ratio and R-square were re-calculated. Then, following corrections were made in the abstract, the body, Fig. 3, Fig. 4 and Table 2 in this article.

5.
Anal Sci ; 34(9): 1073-1078, 2018 Sep 10.
Article in English | MEDLINE | ID: mdl-29806615

ABSTRACT

We have developed a microfluidic bioassay system that mimics glomerular filtration and tubular secretion in the kidney. The system consists of a peristaltic micropump (heart), a dialysis component (renal corpuscle), and a secretion component (renal proximal tubule). Analytes were separated by size using a dialysis membrane in the dialysis component. Model cells were cultured on a membrane in the secretion component, and active transport mediated by P-glycoprotein (P-gp) was confirmed using the P-gp substrate rhodamine 123 with or without the P-gp inhibitor quinidine sulfate. The system achieved both size separation and selective transport by P-gp on a single microchip. This proof-of-concept model may find applications in drug excretion assays, including studies of drug-drug interactions during tubular secretion.


Subject(s)
Biological Assay/instrumentation , Kidney/metabolism , Lab-On-A-Chip Devices , Renal Dialysis/instrumentation , Caco-2 Cells , Glomerular Filtration Rate , Humans , Kidney/physiology
6.
Pharm Res ; 35(7): 138, 2018 05 10.
Article in English | MEDLINE | ID: mdl-29748935

ABSTRACT

PURPOSE: To evaluate association of the dose-dependent effect of rifampicin, an OATP1B inhibitor, on the plasma concentration-time profiles among OATP1B substrates drugs and endogenous substrates. METHODS: Eight healthy volunteers received atorvastatin (1 mg), pitavastatin (0.2 mg), rosuvastatin (0.5 mg), and fluvastatin (2 mg) alone or with rifampicin (300 or 600 mg) in a crossover fashion. The plasma concentrations of these OATP1B probe drugs, total and direct bilirubin, glycochenodeoxycholate-3-sulfate (GCDCA-S), and coproporphyrin I, were determined. RESULTS: The most striking effect of 600 mg rifampicin was on atorvastatin (6.0-times increase) and GCDCA-S (10-times increase). The AUC0-24h of atorvastatin was reasonably correlated with that of pitavastatin (r2 = 0.73) and with the AUC0-4h of fluvastatin (r2 = 0.62) and sufficiently with the AUC0-24h of rosuvastatin (r2 = 0.32). The AUC0-24h of GCDCA-S was reasonably correlated with those of direct bilirubin (r2 = 0.74) and coproporphyrin I (r2 = 0.78), and sufficiently with that of total bilirubin (r2 = 0.30). The AUC0-24h of GCDCA-S, direct bilirubin, and coproporphyrin I were reasonably correlated with that of atorvastatin (r2 = 0.48-0.70) [corrected]. CONCLUSION: These results suggest that direct bilirubin, GCDCA-S, and coproporphyrin I are promising surrogate probes for the quantitative assessment of potential OATP1B-mediated DDI.


Subject(s)
Antibiotics, Antitubercular/blood , Antibiotics, Antitubercular/pharmacology , Organic Anion Transport Protein 1/antagonists & inhibitors , Organic Anion Transport Protein 1/blood , Rifampin/blood , Rifampin/pharmacology , Adult , Cross-Over Studies , Dose-Response Relationship, Drug , Healthy Volunteers , Humans , Male , Substrate Specificity/drug effects , Substrate Specificity/physiology , Tandem Mass Spectrometry/methods
7.
Biochem Biophys Res Commun ; 495(3): 2152-2157, 2018 01 15.
Article in English | MEDLINE | ID: mdl-29273507

ABSTRACT

Bioluminescence (BL) imaging based on d-luciferin (d-luc)-luciferase reaction allows noninvasive and real-time monitoring of luciferase-expressing cells. Because BL intensity depends on photons generated through the d-luc-luciferase reaction, an approach to increase intracellular levels of d-luc could improve the detection sensitivity. In the present study, we showed that organic anion transporter 1 (OAT1) is useful, as a d-luc transporter, in boosting the BL intensity in luciferase-expressing cells. Functional screening of several transporters showed that the expression of OAT1 in HEK293 cells stably expressing Pyrearinus termitilluminans luciferase (HEK293/eLuc) markedly enhanced BL intensity in the presence of d-luc. When OAT1 was transiently expressed in HEK293 cells, intracellular accumulation of d-luc was higher than that in control cells, and the specific d-luc uptake mediated by OAT1 was saturable with a Michaelis constant (Km) of 0.23 µM. The interaction between OAT1 and d-luc was verified using 6-carboxyfluorescein, a typical substrate of OAT1, which showed that d-luc inhibited the uptake of 6-carboxyfluorescein mediated by OAT1. BL intensity was concentration-dependent at steady states in HEK293/eLuc cells stably expressing OAT1, and followed Michaelis-Menten kinetics with an apparent Km of 0.36 µM. In addition, the enhanced BL was significantly inhibited by OAT1-specific inhibitors. Thus, OAT1-mediated transport of d-luc could be a rate-limiting step in the d-luc-luciferase reaction. Furthermore, we found that expressing OAT1 in HEK293/eLuc cells implanted subcutaneously in mice also significantly increased the BL after intraperitoneal injection of d-luc. Our findings suggest that because OAT1 is capable of transporting d-luc, it can also be used to improve visualization and monitoring of luciferase-expressing cells.


Subject(s)
Benzothiazoles/metabolism , Image Enhancement/methods , Luciferases/metabolism , Luminescent Measurements/methods , Organic Anion Transport Protein 1/metabolism , Genes, Reporter/genetics , HEK293 Cells , Humans , Luciferases/genetics , Molecular Imaging/methods , Reproducibility of Results , Sensitivity and Specificity
8.
Pharm Res ; 34(8): 1601-1614, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28550384

ABSTRACT

PURPOSE: To assess the use of glycochenodeoxycholate-3-sulfate (GCDCA-S) and chenodeoxycholate 3- or 24-glucuronide (CDCA-3G or -24G) as surrogate endogenous substrates in the investigation of drug interactions involving OATP1B1 and OATP1B3. METHODS: Uptake of GCDCA-S and CDCA-24G was examined in HEK293 cells transfected with cDNA for OATP1B1, OATP1B3, and NTCP and in cryopreserved human hepatocytes. Plasma concentrations of bile acids and their metabolites (GCDCA-S, CDCA-3G, and CDCA-24G) were determined by LC-MS/MS in eight healthy volunteers with or without administration of rifampicin (600 mg, po). RESULTS: GCDCA-S and CDCA-24G were substrates for OATP1B1, OATP1B3, and NTCP. The uptake of [3H]atorvastatin, GCDCA-S, and CDCA-24G by human hepatocytes was significantly inhibited by both rifampicin and pioglitazone, whereas that of taurocholate was inhibited only by pioglitazone. Rifampicin elevated plasma concentrations of GCDCA-S more than those of other bile acids. The area under the plasma concentration-time curve for GCDCA-S was 20.3 times higher in rifampicin-treated samples. CDCA-24G could be detected only in plasma from the rifampicin-treatment phase, and CDCA-3G was undetectable in both phases. CONCLUSIONS: We identified GCDCA-S and CDCA-24G as substrates of NTCP, OATP1B1, and OATP1B3. GCDCA-S is a surrogate endogenous probe for the assessment of drug interactions involving hepatic OATP1B1 and OATP1B3.


Subject(s)
Chenodeoxycholic Acid/metabolism , Glucuronides/metabolism , Glycochenodeoxycholic Acid/analogs & derivatives , Liver-Specific Organic Anion Transporter 1/metabolism , Solute Carrier Organic Anion Transporter Family Member 1B3/metabolism , Adult , Atorvastatin/metabolism , Bile Acids and Salts/blood , Drug Interactions , Glycochenodeoxycholic Acid/metabolism , HEK293 Cells , Hepatocytes/metabolism , Humans , Male , Organic Anion Transporters, Sodium-Dependent/metabolism , Pioglitazone , Rifampin/pharmacology , Symporters/metabolism , Taurocholic Acid/pharmacology , Thiazolidinediones/pharmacology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...