Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Inorg Chem ; 60(23): 17715-17721, 2021 Dec 06.
Article in English | MEDLINE | ID: mdl-34752082

ABSTRACT

The stability of a zirconium (Zr)-substituted face-centered cubic (FCC) yttrium (Y) hydride (Y1-xZrx hydride) phase was investigated experimentally and theoretically. Two possible sites for hydrogen atoms exist in the FCC structure, namely, T- and O-sites, where hydrogen is present at the center of the tetrahedron and the octahedron composed of Y and/or Zr metals. The P-C isotherms revealed that the hydrogen content per metal (H/M) with 33% Zr-substituted YH3-δ was 2.2-2.3, which was lower than the expected value calculated from the starting composition of YH3-33% ZrH2 (Y0.67Zr0.33H2.67, H/M = 2.67). Hydrogen at the O-site in Y1-xZrx hydride mainly reacted during hydrogen desorption/absorption. On the basis of theoretical analyses, the hydrogen atoms do not occupy the center of the octahedron, when at least two of the six vertices of the octahedron were composed of Zr. The O-sites, where more than two Zr atoms coordinate, nonlinearly increased with the Zr content, and when the Zr content was >50%, almost no hydrogen atoms occupy the O-sites. The theoretical discussion supported the experimental results, and the Zr substitution was confirmed to reduce the occupancy of H at the O-site in the FCC YH3 significantly.

2.
Sci Rep ; 10(1): 16918, 2020 Oct 09.
Article in English | MEDLINE | ID: mdl-33037301

ABSTRACT

Designing a high-capacity positive electrode material is critical for the advancement of lithium-ion batteries. Sulfurized polyethylene glycol (SPEG), containing ca. 61 wt% of sulfur, is a promising positive electrode material that exhibits a large initial discharge capacity of more than 800 mAh g-1. In this study, we present the local structure and electrochemical performances of SPEG. A high-energy X-ray total scattering experiment revealed that sulfur in SPEG is predominantly fragmented and bound to carbon atoms. The changes in the physicochemical properties of SPEG due to heat treatment with nitrogen gas at various temperatures were investigated using thermogravimetric analysis, Raman spectroscopy, X-ray absorption near edge structure, and extended X-ray absorption fine structure. Comparing the electrochemical performances of SPEG after heat treatment at various temperatures, it was found that S-S and C=S bonds contribute to the overall electrochemical performance of SPEG.

3.
ACS Omega ; 5(30): 18565-18572, 2020 Aug 04.
Article in English | MEDLINE | ID: mdl-32775857

ABSTRACT

Rare-metal-free and high-performance secondary batteries are necessary for improving the efficiency of renewable energy systems. Organic compounds are attractive candidates for the active material of such batteries. Many studies have reported organic active materials that show high energy density per active material weight. However, organic active materials, most of which exhibit low conductivity and low specific density, typically require a large amount of a conductive additive (>50 wt %) to obtain a high utilization rate. Therefore, organic active materials rarely display high energy density per electrode weight. High energy densities per electrode weight can be obtained using high weight fractions of active materials and low weight fractions of conductive additives. Herein, we report that a low-conductivity organic active material, indigo, showed improved net discharge capacity density when even a small amount of a conductive polymer composite, poly(3,4-ethylenedioxythiophene)/polystyrene sulfonic acid (PEDOT/PSS) with d-sorbitol, was used as both a binder and conductive additive. The cycle life was also improved by coating one side of the separator with the composite, which probably hindered the dissolution of the active material. A discharge capacity of 96% of the theoretical capacity of indigo and an improved cycle life were achieved with an electrode containing 80 wt % indigo and with a PEDOT/PSS-coated separator. The optimal fraction of the conductive binder was examined, and the mechanism of conductivity enhancement was discussed. The present scheme allows us to replace the dispersion solvent of the slurry, N-methylpyrrolidone, with water, which can reduce the environmental load during battery manufacturing processes.

4.
ChemSusChem ; 13(9): 2354-2363, 2020 May 08.
Article in English | MEDLINE | ID: mdl-32220113

ABSTRACT

Organic compounds as electrode materials can contribute to sustainability because they are nontoxic and environmentally abundant. The working mechanism during charge-discharge for reported organic compounds as electrode materials is yet to be completely understood. In this study, the structural behavior of 2,5-dimethoxy-1,4-benzoquinone (DMBQ) during charge-discharge is investigated by using NMR spectroscopy, energy-dispersive X-ray spectroscopy, magnetic measurements, operando Raman spectroscopy, and operando X-ray diffraction. For both lithium and sodium systems, DMBQ works as a cathode accompanied with the insertion and deinsertion of Li and Na ions during charge-discharge processes. The DMBQ sample is found to be in two-phase coexistence state at the higher voltage plateau, and the radical monoanion and dianion phases have no long-distance ordering. These structures reversibly change into the original neutral phase with long-distance ordering. These techniques can show the charge-discharge mechanism and the factors that determine the deterioration of organic batteries, thus guiding the design of future high-performance organic batteries.

5.
Inorg Chem ; 58(19): 13102-13107, 2019 Oct 07.
Article in English | MEDLINE | ID: mdl-31502447

ABSTRACT

A face-centered-cubic (FCC) YH3 phase is known to be stable only under high pressure (HP) of more than gigapascal order, and it reverts to the hexagonal YH3 ambient-pressure phase when the pressure is released. We previously found that the FCC YH3 can be stabilized even at ambient pressure by substituting Y for 10 mol % Li (LiH-stabilized YH3, LSY). The LSY was synthesized by heat treatment under gigapascal HP, but this process is unfavorable for mass production; that is, only a few tens of milligrams of a sample can be obtained in a single batch. In this study, we overcame this problem by applying a ball milling (BM) process for synthesizing the LSY phase, and the yield by the BM process reached on the order of grams. We confirmed that the structure of the BM sample was the same as that of the HP sample by X-ray diffractometry, Raman spectroscopy, and neutron total scattering pair distribution function analyses. The crystallinity of the BM sample, however, was lower than that of the HP sample. The difference in the crystallinity affects the thermal stability of the LSY. The BM sample with a lower crystallinity released hydrogen at a lower temperature. The BM sample was found to reversibly desorb/absorb hydrogen maintaining its initial FCC structure when the rehydrogenation temperature was at 423 K. However, when the rehydrogenation temperature of BM sample was more than 573 K, the FCC structure changed to the hexagonal ambient pressure phase due to thermal instability of FCC phase for the BM sample.

6.
Chemphyschem ; 20(7): 967-971, 2019 04 02.
Article in English | MEDLINE | ID: mdl-30775839

ABSTRACT

An anthraquinone (AQ)-based dimer and trimer linked by a triple bond (-C≡C-) were newly synthesized as active materials for the positive electrode of rechargeable lithium batteries. These synthesized oligomers exhibited an initial discharge capacity of about 200 mAh g-1 with an average voltage of 2.2-2.3 V versus Li(C.E.) . These capacity values are similar to that of the AQ-monomer, reflecting the two-electron transfer redox per AQ unit. Regarding their cycling stability, the capacity of the monomer electrode quickly decreased; however, the electrodes of the prepared oligomers showed an improved cycling performance. In particular, the discharge capacities of the trimer remained almost constant for 100 cycles. A theoretical calculation revealed that the intermolecular binding energy can be increased to the level of a weak covalent bonding by oligomerization, which would be beneficial to suppress the dissolution of the organic active materials into the electrolyte solutions. These results show that the cycle-life of organic active materials can be extended without lowering the discharge capacity by the oligomerization of the redox active molecule unit.

7.
Inorg Chem ; 57(8): 4686-4692, 2018 Apr 16.
Article in English | MEDLINE | ID: mdl-29620366

ABSTRACT

Heavy rare-earth trihydrides such as GdH3, DyH3, and yttrium trihydide (YH3) usually show a hexagonal crystal structure under ambient pressure. This structure is known to transform to a face-centered cubic (FCC) one at higher pressures (at the order of GPa), and the FCC one returns to the hexagonal structure when the applied pressure is released. In this study, we investigated the structure of alkaline or alkaline-earth (A)-substituted REH3 (RE = Y, Gd, Dy; A = Li, K, or Mg) using X-ray diffraction, and measured the phase transition pressure. We found that this FCC high-pressure phase can be stabilized by 10-33 mol % A substitution for RE in the REH3. The mechanism of phase stabilization is simply explained by the ionic radius ratio between the cation and anion ( rcat/ rani), as well as the stabilities of other ionic crystals such as perovskite materials. For all considered REH3 samples, the FCC phase becomes stable when rcat/ rani > 0.856, such as in the case of 10 mol % Li-substituted YH3.

8.
Sci Rep ; 4: 3650, 2014 Jan 13.
Article in English | MEDLINE | ID: mdl-24413423

ABSTRACT

Using sodium, instead of lithium, in rechargeable batteries is a way to circumvent the lithium's resource problem. The challenge is to find an electrode material that can reversibly undergo redox reactions in a sodium-electrolyte at the desired electrochemical potential. We proved that indigo carmine (IC, 5,5'-indigodisulfonic acid sodium salt) can work as a positive-electrode material in not only a lithium-, but also a sodium-electrolyte. The discharge capacity of the IC-electrode was ~100 mAh g(-1) with a good cycle stability in either the Na or Li electrolyte, in which the average voltage was 1.8 V vs. Na(+)/Na and 2.2 V vs. Li(+)/Li, respectively. Two Na ions per IC are stored in the electrode during the discharge, testifying to the two-electron redox reaction. An X-ray diffraction analysis revealed a layer structure for the IC powder and the DFT calculation suggested the formation of a band-like structure in the crystal.

9.
Chem Commun (Camb) ; (28): 3526-8, 2005 Jul 28.
Article in English | MEDLINE | ID: mdl-16010312

ABSTRACT

A novel 3D metal-organic framework with predesigned cubic building blocks and 1D open channels exhibiting significant N2 adsorption has been synthesized and characterized by single crystal X-ray diffraction analysis.

SELECTION OF CITATIONS
SEARCH DETAIL
...