Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nanotechnology ; 27(48): 485203, 2016 Dec 02.
Article in English | MEDLINE | ID: mdl-27796272

ABSTRACT

For the double MgO based perpendicular magnetic tunneling junction (p-MTJ) spin-valves with a top Co2Fe6B2 free layer ex situ annealed at 400 °C, the tunneling-magnetoresistance ratio (TMR) strongly depended on the platinum (Pt) seed layer thickness (t Pt): it peaked (∼134%) at a specific t Pt (3.3 nm). The TMR ratio was initially and slightly increased from 113%-134% by the enhancement of the magnetic moment of the Co2Fe6B2 pinned layer when t Pt increased from 2.0-3.3 nm, and then rapidly decreased from 134%-38.6% by the degrading face-centered-cubic crystallinity of the MgO tunneling barrier when t Pt increased from 3.3-14.3 nm.

2.
Nanotechnology ; 26(19): 195702, 2015 May 15.
Article in English | MEDLINE | ID: mdl-25895901

ABSTRACT

The TMR ratio of Co2Fe6B2/MgO-based p-MTJ spin valves stacked with a [Co/Pd]n-SyAF layer decreased rapidly when the ex situ magnetic annealing temperature (Tex) was increased from 275 to 325 °C, and this decrease was associated with degradation of the Co2Fe6B2 pinned layer rather than the Co2Fe6B2 free layer. At a Tex above 325 °C the amorphous Co2Fe6B2 pinned layer was transformed into a face-centered-cubic (fcc) crystalline layer textured from [Co/Pd]n-SyAF, abruptly reducing the Δ1 coherence tunneling of perpendicular-spin-torque electrons between the (100) MgO tunneling barrier and the fcc Co2Fe6B2 pinned layer.

3.
Nanoscale ; 7(17): 8142-8, 2015 May 07.
Article in English | MEDLINE | ID: mdl-25874844

ABSTRACT

The tunnel magnetoresistance (TMR) ratio of a cobalt-iron-boron (CoFeB)-based perpendicular-magnetic-tunnel-junction (p-MTJ) spin valve is extremely sensitive to both nanoscale Co2Fe6B2 free- and pinned-layer thicknesses. The TMR ratio peaks at a Co2Fe6B2 free-layer thickness of 1.05 nm, while it peaks at a Co2Fe6B2 pinned-layer thickness of 1.59 nm, achieving 104%. The amount of tantalum diffused into the MgO tunneling barrier (originated from a tantalum seed) decreases with increasing Co2Fe6B2 free-layer thickness, while the amount of palladium diffused from a [Co/Pd]n SyAF layer decreases with increasing Co2Fe6B2 pinned-layer thickness, determining the crystallinity of the MgO tunneling barrier and the TMR ratio. In addition, the TMR ratio tended to decrease when the Co2Fe6B2 free layer and the Co2Fe6B2 pinned layer switched characteristics from interface-perpendicular anisotropic to in-plane anisotropic.

SELECTION OF CITATIONS
SEARCH DETAIL
...