Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 25(7)2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38612758

ABSTRACT

The prevention of tumor recurrence by the successful targeting of glioma stem cells endowed with a tumor-initiating capacity is deemed the key to the long-term survival of glioblastoma patients. Glioma stem cells are characterized by their marked therapeutic resistance; however, recent evidence suggests that they have unique vulnerabilities that may be therapeutically targeted. We investigated MDM2 expression levels in glioma stem cells and their non-stem cell counterparts and the effects of the genetic and pharmacological inhibition of MDM2 on the viability of these cells as well as downstream molecular pathways. The results obtained showed that MDM2 expression was substantially higher in glioma stem cells than in their non-stem cell counterparts and also that the inhibition of MDM2, either genetically or pharmacologically, induced a more pronounced activation of the p53 pathway and apoptotic cell death in the former than in the latter. Specifically, the inhibition of MDM2 caused a p53-dependent increase in the expression of BAX and PUMA and a decrease in the expression of survivin, both of which significantly contributed to the apoptotic death of glioma stem cells. The present study identified the MDM2-p53 axis as a novel therapeutic vulnerability, or an Achilles' heel, which is unique to glioma stem cells. Our results, which suggest that non-stem, bulk tumor cells are less sensitive to MDM2 inhibitors, may help guide the selection of glioblastoma patients suitable for MDM2 inhibitor therapy.


Subject(s)
Glioblastoma , Glioma , Humans , Tumor Suppressor Protein p53/genetics , Glioma/drug therapy , Glioma/genetics , Apoptosis , Neoplastic Stem Cells , Proto-Oncogene Proteins c-mdm2/genetics
2.
Cancers (Basel) ; 16(1)2023 Dec 25.
Article in English | MEDLINE | ID: mdl-38201546

ABSTRACT

Uveal melanoma (UM) is among the most common primary intraocular neoplasms in adults, with limited therapeutic options for advanced/metastatic disease. Since UM is characterized by infrequent p53 mutation coupled with the overexpression of MDM4, a major negative regulator of p53, we aimed to investigate in this study the effects on UM cells of CEP-1347, a novel MDM4 inhibitor with a known safety profile in humans. We also examined the impact of CEP-1347 on the protein kinase C (PKC) pathway, known to play a pivotal role in UM cell growth. High-grade UM cell lines were used to analyze the effects of genetic and pharmacological inhibition of MDM4 and PKC, respectively, as well as those of CEP-1347 treatment, on p53 expression and cell viability. The results showed that, at its clinically relevant concentrations, CEP-1347 reduced not only MDM4 expression but also PKC activity, activated the p53 pathway, and effectively inhibited the growth of UM cells. Importantly, whereas inhibition of either MDM4 expression or PKC activity alone failed to efficiently activate p53 and inhibit cell growth, inhibition of both resulted in effective activation of p53 and inhibition of cell growth. These data suggest that there exists a hitherto unrecognized interaction between MDM4 and PKC to inactivate the p53-dependent growth control in UM cells. CEP-1347, which dually targets MDM4 and PKC, could therefore be a promising therapeutic candidate in the treatment of UM.

SELECTION OF CITATIONS
SEARCH DETAIL
...