Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Ophthalmol ; 2015: 460918, 2015.
Article in English | MEDLINE | ID: mdl-25821587

ABSTRACT

Purpose. To determine the correlation of reduced retinal thickness in the central papillomacular bundle (CPB) to central visual function, including central retinal sensitivity and visual acuity, in glaucoma patients. Methods. This study enrolled 50 eyes of 50 patients with open-angle glaucoma who were carefully screened for comorbid conditions that can cause decreased central visual function, such as cataracts or macular diseases. We used a novel CPB analysis comprising a program for optical coherence tomography that measured RNFL thickness and GCC thickness in the CPB and divided lengthwise into three parts (upper, middle, and lower CPB). The relationship of these parameters, including conventional macular thickness, to visual field sensitivity in four central standard automated perimetry points (the central four thresholds) and BCVA was analyzed. Results. The two parameters most highly correlated with central four thresholds were macular GCCT and macular RNFLT. The two parameters most highly correlated with BCVA were middle CPB (mid-CPB) GCCT and mid-CPB RNFLT. A multiple regression analysis revealed that mid-CPB GCCT was an independent factor impacting central retinal thresholds and BCVA. Conclusions. Our results suggest that mid-CPB RNFLT and GCCT, parameters of a novel papillomacular bundle analysis, are candidate biomarkers of decreased central visual function in glaucomatous eyes.

2.
J Ophthalmol ; 2014: 468908, 2014.
Article in English | MEDLINE | ID: mdl-25574382

ABSTRACT

Purpose. To assess the association between optic nerve head (ONH) microcirculation, central papillomacular bundle (CPB) structure, and visual function in eyes with treatment naive normal tension glaucoma (NTG). Methods. This study included 40 eyes of 40 patients with NTG and 20 eyes of 20 normal patients. We used laser speckle flowgraphy (LSFG) to measure mean blur rate (MBR) in all eyes and calculated the ratio of MBR in the horizontal quadrants of tissue area ONH (temporal/nasal ratio of MBR in the tissue area: T/N MT). Clinical findings also included retinal nerve fiber layer thickness (RNFLT) and ganglion cell complex thickness (GCCT) in the CPB and macular areas, best-corrected visual acuity (BCVA), mean deviation (MD), and refractive error. Results. T/N MT was correlated with both BCVA and MD. The OCT parameters most highly correlated with T/N MT were macular RNFLT and mid-CPB RNFLT. Furthermore, T/N MT, mid-CPB RNFLT, and macular RNFLT were higher in NTG than in normal eyes. A discrimination analysis revealed that T/N MT and refractive error were independent factors indicating NTG. Conclusions. Our results suggest that T/N MT is a candidate biomarker of NTG. Furthermore, T/N MT reflects visual function, including acuity and sensitivity, and CPB structure.

4.
J Biomed Opt ; 9(1): 154-61, 2004.
Article in English | MEDLINE | ID: mdl-14715068

ABSTRACT

The single-pass modulation transfer function (MTF(sgl)) is an important numerical parameter that can help elucidate the performance and some processes of the human visual system. In previous studies, the MTF(sgl) was calculated from double-pass point spread function (PSF) measurements. These measurements include a depolarized reflection component from the retina that introduces a measurement artifact, and they require long acquisition times to allow averaging to reduce speckle. To solve these problems, we developed a new ocular PSF analysis system (PSFAS) that uses polarization optics to eliminate the depolarized retinal reflection component, and a rotating prism to increase measurement speed. Validation experiments on one patient showed that the MTF(sgl) measured by PSFAS agrees closely with the MTF calculated from contrast sensitivity measurements. A simulated retinal image was calculated by convolution of Landolt rings with the calculated single-pass PSF provided by the PSFAS. The contrast characteristic then was calculated from the simulated retinal images. These results indicate that the MTF(sgl) obtained using the PSFAS may be a reliable measure of visual performance of the optics of the eye, including the optical effects of the retina. The simulated retinal images and contrast characteristics are useful for evaluating visual performance.


Subject(s)
Algorithms , Eye Diseases/diagnosis , Models, Biological , Photometry/instrumentation , Retina/physiopathology , Vision Tests/instrumentation , Vision Tests/methods , Vision, Ocular , Adult , Aged , Aged, 80 and over , Computer Simulation , Diagnosis, Computer-Assisted/instrumentation , Diagnosis, Computer-Assisted/methods , Equipment Design , Equipment Failure Analysis , Humans , Microscopy, Polarization/instrumentation , Microscopy, Polarization/methods , Middle Aged , Ophthalmoscopes , Ophthalmoscopy/methods , Photometry/methods , Reproducibility of Results , Sensitivity and Specificity , Visual Acuity
SELECTION OF CITATIONS
SEARCH DETAIL
...