Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Gene ; 901: 148167, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38224921

ABSTRACT

Toothed whales have developed specialized echolocation abilities that are crucial for underwater activities. Acoustic fat bodies, including the melon, extramandibular fat body, and intramandibular fat body, are vital for echolocation. This study explores the transcriptome of acoustic fat bodies in toothed whales, revealing some insight into their evolutionary origins and ecological significance. Comparative transcriptome analysis of acoustic fat bodies and related tissues in a harbor porpoise and a Pacific white-sided dolphin reveals that acoustic fat bodies possess characteristics of both muscle and adipose tissue, occupying an intermediate position. The melon and extramandibular fat body exhibit specific muscle-related functions, implying an evolutionary connection between acoustic fat bodies and muscle tissue. Furthermore, we suggested that the melon and extramandibular fat body originate from intramuscular adipose tissue, a component of white adipose tissue. The extramandibular fat body has been identified as an evolutionary homolog of the masseter muscle, supported by the specific expression of MYH16, a pivotal protein in masticatory muscles. The intramandibular fat body, located within the mandibular foramen, shows possibilities of the presence of several immune-related functions, likely due to its proximity to bone marrow. Furthermore, this study sheds light on leucine modification in the catabolic pathway, which leads to the accumulation of isovaleric acid in acoustic fat bodies. Swallowing without chewing, a major toothed whale feeding ecology adaptation, makes the masticatory muscle redundant and leads to the formation of the extramandibular fat body. We propose that the intramuscular fat enlargement in facial muscles, which influences acoustic fat body development, is potentially related to the substantial reorganization of head morphology in toothed whales during aquatic adaptation.


Subject(s)
Echolocation , Fat Body , Animals , Skull , Acoustics , Echolocation/physiology , Muscles , Whales/anatomy & histology , Whales/physiology
2.
Nanotechnology ; 33(37)2022 Jun 24.
Article in English | MEDLINE | ID: mdl-35667365

ABSTRACT

Ta-based high-κdielectrics can be synthesized via the oxidation of TaS2films. In this study, we investigated the wet and dry oxidation of TaS2films via thermal annealing and plasma irradiation, respectively. The specific vibration observed via Raman spectroscopy, the bonding states observed via x-ray photoelectron spectroscopy, and capacitance measurements confirmed the oxidation of TaS2films with a dielectric constant of ∼14.9. Moreover, the electrical transport of the TaS2films along the in-plane direction indicated a change in conductivity before and after the oxidation. The thickness of the oxidized film was estimated. Accordingly, the layer-by-layer oxidation was limited to approximately 50 nm via plasma irradiation, whereas the TaS2films within 150 nm were fully oxidized via thermal annealing in ambient air. Therefore, a Ta-oxide/TaS2structure was fabricated as a stack material of insulator and metal when the thickness of the pristine film was greater than 50 nm. In addition, Ta-oxide films were integrated into bottom-gated two-dimensional (2D) field-effect transistors (FETs) using the dry transfer method. 2D FETs with multilayer MoTe2and MoS2films asp-type andn-type channels, respectively, were successfully fabricated. In particular, the Ta-oxide film synthesized via dry oxidation was used as a gate dielectric, and the device process could be simplified because the Ta-oxide/TaS2heterostructure can function as a stack material for gate insulators and gate electrodes. An anti-ambipolar transistor consisting of an MoTe2/MoS2heterojunction was also fabricated. For the transfer characteristics, a relatively sharp on-state bias range below 10 V and sufficiently high peak-to-valley ratio of 106atVDS = 3 V were obtained using the high-κ gate dielectric of Ta-oxide despite the presence of the multilayer channels (∼20 nm).

SELECTION OF CITATIONS
SEARCH DETAIL
...