Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Integr Comp Biol ; 63(4): 865-876, 2023 10 10.
Article in English | MEDLINE | ID: mdl-37500258

ABSTRACT

Conspecific recognition is the ability to distinguish and respond to individuals of the same species. In nematodes, this behavior can mediate aggregation, feeding behavior, or mating. Here, we investigated whether and how the predatory nematode Seinura caverna recognizes and avoids conspecifics to prey on. In predation assays, S. caverna did not kill conspecifics, but killed nematodes of three heterospecific species. Interestingly, S. caverna did not kill Ektaphelenchoides spondylis nematodes. Seinura caverna did not eject its stylet when encountering conspecifics or E. spondylis. The characterization of the internal cuticle structure of 13 nematode species suggested that the cuticle may play a role in the preying decision, as E. spondylis and S. caverna exhibited similar, type III, cuticle layers. Chemical extracts from S. caverna further repelled conspecifics. We discuss the potential hierarchical use of physical and chemical cues in S. caverna predation behavior and provide insights into the evolutionary adaptations and behavior of this organism.


Subject(s)
Coleoptera , Nematoda , Animals , Cues , Predatory Behavior
2.
Front Plant Sci ; 12: 640459, 2021.
Article in English | MEDLINE | ID: mdl-33763098

ABSTRACT

Pine wilt disease, caused by the pinewood nematode, Bursaphelenchus xylophilus, is one of the world's most serious tree diseases. Although the B. xylophilus whole-genome sequence and comprehensive secretome profile have been determined over the past decade, it remains unclear what molecules are critical in pine wilt disease and govern B. xylophilus virulence in host pine trees. Here, a comparative secretome analysis among four isolates of B. xylophilus with distinct virulence levels was performed to identify virulence determinants. The four candidate virulence determinants of B. xylophilus highly secreted in virulent isolates included lipase (Bx-lip1), glycoside hydrolase family 30 (Bx-GH30), and two C1A family cysteine peptidases (Bx-CAT1 and Bx-CAT2). To validate the quantitative differences in the four potential virulence determinants among virulence groups at the protein level, we used real-time reverse-transcription polymerase chain reaction analysis to investigate these determinants at the transcript level at three time points: pre-inoculation, 3 days after inoculation (dai), and 7 dai into pine seedlings. The transcript levels of Bx-CAT1, Bx-CAT2, and Bx-GH30 were significantly higher in virulent isolates than in avirulent isolates at pre-inoculation and 3 dai. A subsequent leaf-disk assay based on transient overexpression in Nicotiana benthamiana revealed that the GH30 candidate virulent factor caused cell death in the plant. Furthermore, we demonstrated that Bx-CAT2 was involved in nutrient uptake for fungal feeding via soaking-mediated RNA interference. These findings indicate that the secreted proteins Bx-GH30 and Bx-CAT2 contribute to B. xylophilus virulence in host pine trees and may be involved in pine wilt disease.

3.
PLoS One ; 16(1): e0244653, 2021.
Article in English | MEDLINE | ID: mdl-33406135

ABSTRACT

A preliminary survey of Seinura spp. was conducted in the Kyoto area, Western Japan. The survey yielded four new strains of Seinura spp., including two strains of S. caverna, a strain of S. italiensis, and a strain of an undescribed species. Molecularly, the two strains of S. caverna were nearly identical to the type strain but showed some minor variations, particularly in the mitochondrial cytochrome oxidase subunit I gene. The small subunit and D2-D3 large subunit sequences of the Japanese strain of S. italiensis were nearly identical and identical to its original description, respectively, and the difference in the small subunit was due to mis-reading of the sequences. The new species, S. shigaensis n. sp., was phylogenetically close to S. caverna and S. persica, although these three species were clearly different phylogenetically. The new species was typologically similar or nearly identical to several other Seinura spp., including S. chertkovi, S. christiei, S. italiensis, S. steineri, and S. tenuicaudata, but it can be distinguished from those species by the morphometric values. Because the new species is phylogenetically very close to S. caverna, it could be a good comparative system for S. caverna as a potential satellite model for the predatory nematode.


Subject(s)
Genes, Mitochondrial , Rhabditida/isolation & purification , Animals , Electron Transport Complex IV/genetics , Japan , Rhabditida/genetics , Sequence Analysis, DNA
4.
Sci Rep ; 9(1): 6080, 2019 04 15.
Article in English | MEDLINE | ID: mdl-30988401

ABSTRACT

The pine wood nematode Bursaphelenchus xylophilus is the causal agent of pine wilt disease, one of the most devastating forest diseases in East Asian and West European countries. The lifecycle of B. xylophilus includes four propagative larval stages and gonochoristic adults which are involved in the pathogenicity, and two stages of dispersal larvae involved in the spread of the disease. To elucidate the ecological roles of each developmental stage in the pathogenic life cycle, we performed a comprehensive transcriptome analysis using RNA-seq generated from all developmental stages of B. xylophilus and compared transcriptomes between stages. We found more than 9000 genes are differentially expressed in at least one stage of the life cycle including genes involved in general nematode biology such as reproduction and moulting but also effector genes likely to be involved in parasitism. The dispersal-stage transcriptome revealed its analogy to C. elegans dauer and the distinct roles of the two larval stages from each other regarding survival and transmission. This study provides important insights and resources to understand B. xylophilus parasitic biology.


Subject(s)
Gene Expression Regulation, Developmental , Life Cycle Stages/genetics , Pinus/parasitology , Plant Diseases/parasitology , Tylenchida/genetics , Animal Distribution , Animals , Genes, Helminth/genetics , Helminth Proteins/genetics , Helminth Proteins/metabolism , RNA-Seq , Tylenchida/pathogenicity
5.
Mycorrhiza ; 28(1): 17-28, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29046936

ABSTRACT

Non-ectomycorrhizal fungi that associate with typical ectomycorrhizae often remain hidden, and their localization inside ectomycorrhizal (ECM) roots has remained uncharacterized. In this study, the fungal community associated with the ectomycorrhizae of Castanopsis cuspidata was investigated using a culture-dependent isolation technique. Additionally, the species composition and localization were determined using molecular techniques. The results of the isolation and identification of fungal species revealed the predominance of a few species belonging to the order Helotiales. Furthermore, the fungal community structures were significantly different depending on the taxa of the ectomycorrhiza-forming fungi. A taxon-specific probe was developed to analyze the localization of one dominant Hyaloscyphaceae (Helotiales) species in ECM tissues by in situ hybridization. Hybridization signals were detected on the surface of the fungal mantle and around the ECM fungal cells within the mantle. Hyphal penetration into ECM hyphal cells of fungal mantles was also observed. Signals were not detected in the Hartig net or plant tissues inside the mantle in healthy ectomycorrhizae. These findings suggest that the analyzed species interact not only with host plant as root endophyte but also directly with the ECM fungi.


Subject(s)
Ascomycota/physiology , Fagaceae/microbiology , Mycorrhizae/physiology , Ascomycota/classification , In Situ Hybridization , Mycorrhizae/classification , Plant Roots/microbiology , Trees/microbiology
6.
PLoS One ; 12(10): e0187127, 2017.
Article in English | MEDLINE | ID: mdl-29073232

ABSTRACT

The pine wood nematode, Bursaphelenchus xylophilus, is the causal agent of pine wilt disease. This nematode has two developmental forms in its life cycle; i.e., the propagative and dispersal forms. The former is the form that builds up its population inside the host pine. The latter is specialized for transport by the vector. This form is separated into two dispersal stages (third and fourth); the third-stage dispersal juvenile (JIII) is specialized for survival under unfavorable conditions, whereas the fourth-stage juvenile (JIV), which is induced by a chemical signal from the carrier Monochamus beetle, is transported to new host pines and invades them. Because of its importance in the disease cycle, molecular and chemical aspects of the JIV have been investigated, while the mechanism of JIII induction has not been sufficiently investigated. In an effort to clarify the JIII induction process, we established inbred lines of B. xylophilus and compared their biological features. We found that the total number of nematodes (propagation proportion) was negatively correlated with the JIII emergence proportion, likely because nematode development was arrested at JIII; i.e., they could not develop to adults via the reproductive stage. In addition, JIII induction seemed to be regulated by a small number of genes because the JIII induction proportion varied among inbred lines despite the high homozygosity of the parental line. We also demonstrated that JIII can be artificially induced by the nematode's secreted substances. This is the first report of artificial induction of JIII in B. xylophilus. The dauer (dispersal) juvenile of the model organism Caenorhabditis elegans corresponds functionally to JIII of B. xylophilus, and this stage is known to be induced by a chemical signal referred to as daumone, derived from the nematodes' secretion. The artificial induction of JIII suggests the presence of daumone-like material in B. xylophilus.


Subject(s)
Nematoda/growth & development , Animals , Life Cycle Stages , Pinus/parasitology
7.
PLoS One ; 12(6): e0179465, 2017.
Article in English | MEDLINE | ID: mdl-28622353

ABSTRACT

Using transmission electron microscopy, we examined the body cuticle ultrastructures of phoretic and parasitic stages of the parasitaphelenchid nematodes Bursaphelenchus xylophilus, B. conicaudatus, B. luxuriosae, B. rainulfi; an unidentified Bursaphelenchus species, and an unidentified Parasitaphelenchus species. Nematode body cuticles usually consist of three zones, a cortical zone, a median zone, and a basal zone. The phoretic stages of Bursaphelenchus spp., isolated from the tracheal systems of longhorn beetles or the elytra of bark beetles, have a thick and radially striated basal zone. In contrast, the parasitic stage of Parasitaphelenchus sp., isolated from bark beetle hemocoel, has no radial striations in the basal zone. This difference probably reflects the peculiar ecological characteristics of the phoretic stage. A well-developed basal radially striated zone, composed of very closely linked proteins, is the zone closest to the body wall muscle. Therefore, the striation is necessary for the phoretic species to be able to seek, enter, and depart from host/carrier insects, but is not essential for internal parasites in parasitaphelenchid nematodes. Phylogenetic relationships inferred from near-full-length small subunit ribosomal RNA sequences suggest that the cuticle structures of parasitic species have apomorphic characters, e.g., lack of striation in the basal zone, concurrent with the evolution of insect parasitism from a phoretic life history.


Subject(s)
Animal Structures , Nematoda , Phylogeny , RNA, Helminth , RNA, Ribosomal , Animal Structures/metabolism , Animal Structures/ultrastructure , Animals , Coleoptera/parasitology , Microscopy, Electron, Transmission , Nematoda/genetics , Nematoda/metabolism , Nematoda/ultrastructure , RNA, Helminth/genetics , RNA, Helminth/metabolism , RNA, Ribosomal/genetics , RNA, Ribosomal/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...