Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 11(1): 10055, 2021 05 12.
Article in English | MEDLINE | ID: mdl-33980927

ABSTRACT

In this paper, we propose a finger-jointing model to describe the possible ultrastructures of cellulose microfibrils based on new observations obtained through heating of 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) oxidized cellulose nanofibrils (CNFs) in saturated water vapor. We heated the micrometers-long TEMPO-CNFs in saturated water vapor (≥ 120 °C, ≥ 0.2 MPa) and observed a surprising fact that the long TEMPO-CNFs unzipped into short (100 s of nanometers long) fibers. We characterized the heated TEMPO-CNFs using X-ray diffraction (XRD) and observed the XRD patterns were in consistent with Iß. We observed also jointed ultrastructures on the heated TEMPO-CNFs via high-resolution transmission electron microscopy (HR-TEM). Thus we concluded that cellulose microfibrils are not seamlessly long structures, but serial jointed structures of shorter blocks. Polysaccharide chains of the short blocks organized in Iß. The jointed region can be either Iα or amorphous, depending on positions and distances among the chains jointed in proximity. Under heating, Iα was not converted into Iß but was simply destroyed. The jointed structure implies a "working and resting rhythm" in the biosynthesis of cellulose.

2.
J Colloid Interface Sci ; 584: 816-826, 2021 Feb 15.
Article in English | MEDLINE | ID: mdl-33121756

ABSTRACT

Highly dispersed graphene nanosheets (GNS) are directly integrated into polyurethane sponge for the very first time. Individual GNS with an average thickness of 5 nm were uniformly encapsulated in polyurethane sponge (PUF). Highly durable, flexible, hydrophilic GNS/PUF demonstrated excellent organic dye absorption properties. For a detailed study, we selected typical water-soluble organic dyes such as methylene blue (MB), ethidium bromide (EtBr), eosin Y (EY). The adsorption behavior follows the Langmuir isotherm model indicating strong monolayer chemisorption. Adsorption capacity (µmol/g) of GNS while using in GNS/PUF is 586.8 (MB), 843.1 (EtBr), and 813.3 (EY). Thermodynamic study on the adsorption with three organic dyes using GNS/PUF revealed that the process was spontaneous and exothermic in nature. Additionally, the rate of adsorption is higher and follow the pseudo-second-order kinetic model. The detailed pH-dependent study showed that cationic dyes' adsorption increases with an increase in pH, and anionic dyes follow the opposite trend. The overall results show that the new adsorbent has highly suitable for practical application.

3.
J Hazard Mater ; 386: 121979, 2020 03 15.
Article in English | MEDLINE | ID: mdl-31891821

ABSTRACT

Prussian blue (PB), an adsorbent for the selective elimination of radioactive cesium from water, is highly versatile due to its unique crystal structure. However, PB crystals quickly decompose in an alkaline solution, generating hazardous cyanide contamination. In this research, the alkaline susceptibility of PB was remedied by incorporating copper sulfate as a protector. A stability assessment was conducted at several environmental conditions, such as high pH and temperatures from 10 °C to 50 °C, in seawater, artificial seawater, and river water. The crystalline and chemical stability of PB in the new class of composite was extremely high, even at a pH value of 11.2, as confirmed using XRD and total cyanide analysis. A comprehensive mechanism study revealed that, at high pH, the copper ions that cover the PB react with hydroxide ions to form copper hydroxide and shielding inner crystals. To decontaminate radioactive cesium, the first step was to immobilize nano PB on a cellulose nanofiber, followed by copper sulfate stabilization. Then, a spongiform adsorbent was made using polyurethane as the precursor. The new stabilized PB showed promising adsorption efficiency. Thus, this research will open a new range of applications for all existing and emerging PB-based adsorbents.

SELECTION OF CITATIONS
SEARCH DETAIL
...