Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 132
Filter
Add more filters










Publication year range
1.
Acc Chem Res ; 57(6): 884-894, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38428923

ABSTRACT

ConspectusThe crystal structure of organic semiconductors has been regarded as one of the crucial factors for realizing high-performance electronic devices, such as organic field-effect transistors. However, although the control of crystal structures of organic semiconductors has been examined in the last two decades of intensive efforts of the development of organic semiconductors, active measures to control crystal structures enabling high carrier mobility are still limited. In 2016, our research group noticed that regioselective methylthiolation could provide a selective crystal structure change from an ordinary herringbone structure to a pitched π-stacking structure, similar to the crystal structure of rubrene, in the benzo[1,2-b:4,5-b']dithiophene (BDT) system. Following this serendipitous finding, our group systematically investigated the relationship between the molecular and crystal structures of a range of methylthiolated aromatic and heteroaromatic compounds.This Account provides a comprehensive overview of our research efforts and advancements in the development of methylthiolated small-molecule-based organic semiconductors (molecular semiconductors). We first describe the outline of the past development of molecular semiconductors, focusing on the types of crystal structures of high-performance molecular semiconductors. Then, we describe our findings on the drastic crystal structure change in the BDT system upon methylthiolation, detailing the causes of the change in terms of the intermolecular contacts and intermolecular interaction energies. This is followed by the confirmation of the generality of the crystal-structure change by methylthiolation of a series of acene and heteroacenes, where the herringbone structure in the parent system is unexceptionally transformed into the pitched π-stacking structure, a promising crystal structure for high-mobility molecular semiconductors well exemplified by the prototypical molecular semiconductor, rubrene. In fact, the methylthiolated anthradithiophene afforded comparable high mobility to rubrene in single-crystal field-effect transistors. Then, we demonstrate that the sandwich herringbone structures of peri-condensed polycyclic aromatic hydrocarbons, including pyrene, perylene, and peropyrene, change into brickwork crystal structures upon methylthiolation and that, among these compounds, very promising molecular semiconductors, methylthiolated pyrene and peropyrene, showing ultrahigh mobility of 30 cm2 V s-1, are realized.Through the studies, by gaining insights into the underlying mechanisms driving the crystal structure changes, we lay a strong foundation for tackling challenges related to controlling the crystal structures and developing high-performance molecular semiconductors. This will be a distinct approach from the past activities in the development of molecular semiconductors that mainly focused on molecules themselves, including their synthesis, properties, and characterization. We thus anticipate that our findings and the present Account will open the door to a new era of the development of molecular semiconductors.

2.
Adv Mater ; 36(15): e2311047, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38227266

ABSTRACT

Rational design, synthesis, and characterization of a new efficient versatile n-type dopant with a closed-shell electronic structure are described. By employing the tetraphenyl-dipyranylidene (DP0) framework with two 7π-electron systems modified with N,N-dimethylamino groups as the strong electron-donating substituent, 2,2',6,6'-tetrakis[4-(dimethylamino)phenyl]-4,4'-dipyranylidene (DP7), a closed-shell molecule with an extremely high-lying energy level of the highest occupied molecular orbital, close to 4.0 eV below the vacuum level, is successfully developed. Thanks to its thermal stability, DP7 is applicable to vacuum deposition, which allows utilization of DP7 in bulk doping for the development of n-type organic thermoelectric materials and contact doping for reducing contact resistance in n-type organic field-effect transistors. As vacuum-deposition processable n-type dopants are very limited, DP7 stands out as a useful n-type dopant, particularly for the latter purpose.

3.
Chem Sci ; 14(43): 12205-12218, 2023 Nov 08.
Article in English | MEDLINE | ID: mdl-37969578

ABSTRACT

To investigate potential applications of the 3,3'-dihydroxy-2,2'-biindan-1,1'-dione (BIT) structure as an organic semiconductor with intramolecular hydrogen bonds, a new synthetic route under mild conditions is developed based on the addition reaction of 1,3-dione to ninhydrin and the subsequent hydrogenation of the hydroxyl group. This route affords several new BIT derivatives, including asymmetrically substituted structures that are difficult to access by conventional high-temperature synthesis. The BIT derivatives exhibit rapid tautomerization by intramolecular double proton transfer in solution. The tautomerizations are also observed in the solid state by variable temperature measurements of X-ray diffractometry and magic angle spinning 13C solid-state NMR. Possible interplay between the double proton transfer and the charge transport is suggested by quantum chemical calculations. The monoalkylated BIT derivative with a lamellar packing structure suitable for lateral charge transport in films shows a hole mobility of up to 0.012 cm2 V-1 s-1 with a weak temperature dependence in an organic field effect transistor.

4.
Mater Horiz ; 10(12): 5492-5499, 2023 Nov 27.
Article in English | MEDLINE | ID: mdl-37970694

ABSTRACT

Despite the critical importance to carrier transport properties, studies on the control and prediction of crystal structures of molecular semiconductors have not been well-matured. To tackle this issue, we have developed "in silico crystallization" (ISC) protocols for simulating the brickwork (BW) crystal structures of methylchalcogenolated polycyclic aromatic hydrocarbons (PAHs). In this study, by carefully analyzing a BW-related polymorph of experimental crystal structures, an inclined brickwork (iBW) structure, we further extend the ISC protocol to simulate various BW-related crystal structures including iBW structures. Rational conditional branching in the simulation not only makes it possible to simulate eight polymorph candidates of methylchalcogenolated PAHs but also helps understand the relationship between the polymorphs. Furthermore, the relative favorability of each polymorphic candidate, i.e., the likelihood of the appearance among the polymorph candidates, can also be evaluated.

5.
Adv Mater ; 35(49): e2305548, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37468127

ABSTRACT

The crystal structures of molecular semiconductors critically affect their carrier-transport properties. One of the promising crystal structures that afford high carrier mobility is a brickwork structure recently reported for 1,3,6,8-tetrakis(methylthio)pyrene (MT-pyrene) showing ultrahigh mobility. However, such ultrahigh mobility is not realized in other methylchalocogenolated pyrenes, owing to subtle differences in the molecular positions in their crystal structures. This means that, for developing superior molecular semiconductors, it is desirable to simulate the crystal structure with sufficient quality before time-consuming and labor-intensive synthetic trials. To realize this, a new computational approach is developed to simulate crystal structures of all methylchalocogenolated pyrenes, which is then applied to MT-pyrene-related methylthiolated peri-condensed polycyclic aromatic hydrocarbons including perylene, peropyrene, and terrylene derivatives. Among these, 1,3,8,10-tetrakis(methylthio)peropyrene (MT-peropyrene) is expected to show high mobility based on the simulated crystal structures. Thus, MT-peropyrene is chosen as the synthetic target, and a new peropyrene synthesis method is developed. Thus synthesized MT-peropyrene has virtually the same crystal structure as the simulated one, and its single-crystal field-effect transistors show mobility as high as 30 cm2 V-1 s-1 and band-like transport behaviors. These results indicate that the present crystal-structure simulation is a powerful tool for exploring promising molecular semiconductors.

6.
Mater Horiz ; 9(1): 444-451, 2022 Jan 04.
Article in English | MEDLINE | ID: mdl-34788783

ABSTRACT

Starting from a chiral resolution of 2-ethylhexanoic acid followed by conversions of functional groups without interfering with the enantiopurity, we have successfully introduced an enantiopure 2-ethylhexyl group on to dinaphtho[2,3-b:2',3'-f]thieno[3,2-b]thiophene (DNTT) via a Negishi-coupling reaction to synthesize 2-(R)-(2-ethylhexyl)- and 2-(S)-(2-ethylhexyl)-DNTT (R- and S-EH-DNTT, respectively). Then, the crystallinities, thin-film structures, and the organic field-effect transistors (OFETs) based on R-, S- and racemic EH-DNTT (rac-EH-DNTT) were studied to elucidate the effect of stereoisomerism in the 2-ethylhexyl group. The crystal structures of the R- and S-EH-DNTTs are classified as herringbone packing and contain two crystallographically independent molecules connected by edge-to-face CH-π intermolecular interactions, and the molecules' directly opposite directions avoid steric repulsion between the 2-ethylhexyl groups. Thin films of the EH-DNTTs fabricated using both the spin-coating and vacuum-deposition methods were revealed to have similar but slightly different packing structures to that in the single crystal. Intriguingly, the packing structures in the thin-film state depend on the deposition method, and not on the stereoisomers of EH-DNTT. Consistent with the packing structures in the thin-film state, the performance of OFETs based on the thin films of the R-, S- and rac-EH-DNTTs were affected by the deposition method, and not by the stereoisomerism. This means that the stereoisomerism in the alkyl side chain has a marginal effect on the packing structure and electronic properties in the thin-film state. This is endorsed by the theoretical calculations using the functional-group symmetry-adapted perturbation theory (F-SAPT), which indicated that the intermolecular interactions between the DNTT cores are dominant in the total intermolecular interaction energies, and implies that the crystallization process in the thin-film deposition could be governed by intermolecular interactions between the DNTT cores. We conclude that in 2-ethylhexyl-substituted organic semiconductors with a large and highly aggregative π-conjugated core, like EH-DNTT, the enantiopurity in the 2-ethylhexyl group does not significantly affect the thin-film structure and thus the performance of thin-film OFETs.

7.
Chemistry ; 27(63): 15660-15670, 2021 Nov 11.
Article in English | MEDLINE | ID: mdl-34529287

ABSTRACT

Organic semiconductors with very small optical energy gaps have attracted a lot of attention for near-infrared-active optoelectronic applications. Herein, we present a series of donor-acceptor-donor (D-A-D) organic semiconductors consisting of a highly electron-deficient naphtho[1,2-b:5,6-b']dithiophene-2,7-dione quinoidal acceptor and oligothiophene donors that show very small optical energy gaps of down to 0.72 eV in the solid state. Investigation of the physicochemical properties of the D-A-D molecules as well as theoretical calculations of their electronic structures revealed an efficient intramolecular interaction between the quinoidal acceptor and the aromatic oligothiophene donors in the D-A-D molecules; this significantly enhances the backbone resonance and thus reduces the bond length alternation along the π-conjugated backbones. Despite the very small optical energy gaps, the D-A-D molecules have low-lying frontier orbital energy levels that give rise to air-stable ambipolar carrier transport properties with hole and electron mobilities of up to 0.026 and 0.043 cm2 V-1 s-1 , respectively, in field-effect transistors.

8.
Adv Mater ; 33(37): e2008708, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34342927

ABSTRACT

While the charge transport properties of organic semiconductors have been extensively studied over the recent years, the field of organics-based thermoelectrics is still limited by a lack of experimental data on thermal transport and of understanding of the associated structure-property relationships. To fill this gap, a comprehensive experimental and theoretical investigation of the lattice thermal conductivity in polycrystalline thin films of dinaphtho[2,3-b:2',3'-f]thieno[3,2-b]thiophene (Cn-DNTT-Cn with n = 0, 8) semiconductors is reported. Strikingly, thermal conductivity appears to be much more isotropic than charge transport, which is confined to the 2D molecular layers. A direct comparison between experimental measurements (3ω-Völklein method) and theoretical estimations (approach-to-equilibrium molecular dynamics (AEMD) method) indicates that the in-plane thermal conductivity is strongly reduced in the presence of the long terminal alkyl chains. This evolution can be rationalized by the strong localization of the intermolecular vibrational modes in C8-DNTT-C8 in comparison to unsubstituted DNTT cores, as evidenced by a vibrational mode analysis. Combined with the enhanced charge transport properties of alkylated DNTT systems, this opens the possibility to decouple electron and phonon transport in these materials, which provides great potential for enhancing the thermoelectric figure of merit ZT.

9.
Adv Mater ; 33(32): e2102914, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34219291

ABSTRACT

Control and prediction of crystal structures of molecular semiconductors are considered challenging, yet they are crucial for rational design of superior molecular semiconductors. It is here reported that through methylthiolation, one can rationally control the crystal structure of pyrene derivatives as molecular semiconductors; 1,6-bis(methylthio)pyrene keeps a similar sandwich herringbone structure to that of parent pyrene, whereas 1,3,6,8-tetrakis(methylthio)pyrene (MT-pyrene) takes a new type of brickwork structure. Such changes in these crystal structures are explained by the alteration of intermolecular interactions that are efficiently controlled by methylthiolation. Single crystals of MT-pyrene are evaluated as the active semiconducting material in single-crystal field-effect transistors (SC-FETs), which show extremely high mobility (32 cm2 V-1 s-1 on average) operating at the drain and gate voltages of -5 V. Moreover, the band-like transport and very low trap density are experimentally confirmed for the MT-pyrene SC-FETs, testifying that the MT-pyrene is among the best molecular semiconductors for the SC-FET devices.

10.
Opt Express ; 29(7): 10048-10058, 2021 Mar 29.
Article in English | MEDLINE | ID: mdl-33820140

ABSTRACT

We report terahertz electromagnetic wave emission by optical rectification from hydrogen-bonded single molecular crystal 4-nitro-2,5-bis(phenylethynyl)aniline designed to be polar via the hydrogen bonding between nitroaniline cores. The terahertz emission efficiency is comparable to the representative inorganic terahertz emitter ZnTe. We show terahertz emission characteristics, optical spectrum, and theoretical molecular orbital calculations. Another three kinds of nitroaniline-based organic molecules are revealed to form polar crystal structure, and they have large hyperpolarizabilities and have potential for terahertz photonics.

11.
Angew Chem Int Ed Engl ; 60(6): 3261-3267, 2021 Feb 08.
Article in English | MEDLINE | ID: mdl-33098203

ABSTRACT

Polar materials attract wide research interest due to their unique properties, such as ferroelectricity and the bulk photovoltaic effect (BPVE), which are not accessible with nonpolar materials. However, in general, rationally designing polar materials is difficult because nonpolar materials are more favorable in terms of dipole-dipole interactions. Here, we report a rational strategy to form polar assemblies with bowl-shaped π-conjugated molecules and a molecular design principle for this strategy. We synthesized and thoroughly characterized 12 single crystals with the help of various theoretical calculations. Furthermore, we demonstrated that it can be possible to predict whether polar assemblies become more favorable or not by estimating their lattice energies. We believe that this study contributes to the development of organic polar materials and their related studies.

12.
Materials (Basel) ; 13(13)2020 Jul 06.
Article in English | MEDLINE | ID: mdl-32640695

ABSTRACT

A series of quinoidal oligothiophenes terminated with carbonyl groups (nTDs, n = 2-4) are studied as p-type organic semiconductors for the active materials in organic field-effect transistors (OFETs) both by the theoretical and experimental approaches. The theoretical calculations clearly show their high-lying highest occupied molecular orbital (HOMO) energy levels (EHOMOs), small reorganization energies for hole transport (λholes), and large contribution of sulfur atoms to HOMOs, all of which are desirable for p-type organic semiconductors. Thus, we synthesized nTDs from the corresponding aromatic oligothiophene precursors and then evaluated their physicochemical properties and structural properties. These experimental evaluations of nTDs nicely proved the theoretical predictions, and the largest 4TDs in the series (4,4'''-dihexyl- and 3',4,4″,4'''-tetrahexyl-5H,5'''H-[2,2':5',2″:5″,2'''-quaterthiophene]-5,5'''-dione) can afford solution-processed OFETs showing unipolar p-type behaviors and hole mobility as high as 0.026 cm2 V-1 s-1.

13.
Adv Mater ; 32(30): e2002060, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32567129

ABSTRACT

The development of n-type conjugated polymers with high electrical conductivity (σ) has continued to pose a massive challenge in organic thermoelectrics (OTEs). New structural insights into the charge-carrier transport are necessitated for the realization of high-performance OTEs. In this study, three new n-type copolymers, named pNB, pNB-Tz, and pNB-TzDP, consisting of naphthodithiophenediimide (NDTI) and bithiopheneimide (BTI) units, are synthesized by direct arylation polymerization. The backbone orientation is altered by incorporating thiazole units into the backbone and tuning the branching point of the side chain. The alteration of the backbone orientation from face-on to bimodal orientation with both face-on and edge-on fractions significantly impacts the σ and the power factors (PFs) of the polymers. As a result, pNB-TzDP, with the bimodal orientation, demonstrates a high σ of up to 11.6 S cm-1 and PF of up to 53.4 µW m-1 K-2 , which are among the highest in solution-processed n-doped conjugated polymers reported so far. Further studies reveal that the bimodal orientation of pNB-TzDP introduces 3D conduction channels and leads to better accommodation of dopants, which should be the key factors for the excellent thermoelectric performance.

14.
Chem Asian J ; 15(6): 915-919, 2020 Mar 16.
Article in English | MEDLINE | ID: mdl-32022977

ABSTRACT

We carried out a systematic investigation of packing structures of a series of dimethoxyanthracenes, i. e., 1,4- (1), 1,8- (2), 1,5- (3), 2,6- (4), and 2,7-derivatives (5). The packing structures of the dimethoxyanthracenes are classified into two types, a rubrene-like pitched π-stack (1-3) and a typical herringbone packing (4 and 5), which evidently show that the position of methoxy groups is crucial to determine the packing structure of dimethoxyanthracenes. Effects of the substitution position on intermolecular interactions are analyzed by the noncovalent intermolecular interaction (NCI) method, Hirshfeld surface analysis, and symmetry-adapted perturbation theory (SAPT) method, thus clarifying active roles of the methoxy groups in the formation of rubrene-like pitched π-stack. The present results shed light on a molecular design strategy to realize the rubrene-like pitched π-stack in the solid state, which had been regarded as a packing structure limited for rubrene and its closely related derivatives.

15.
Phys Rev Lett ; 124(2): 027204, 2020 Jan 17.
Article in English | MEDLINE | ID: mdl-32004034

ABSTRACT

There is a growing interest in utilizing the distinctive material properties of organic semiconductors for spintronic applications. Here, we explore the injection of pure spin current from Permalloy into a small molecule system based on dinaphtho[2,3-b:2,3-f]thieno[3,2-b]thiophene (DNTT) at ferromagnetic resonance. The unique tunability of organic materials by molecular design allows us to study the impact of interfacial properties on the spin injection efficiency systematically. We show that both the spin injection efficiency at the interface and the spin diffusion length can be tuned sensitively by the interfacial molecular structure and side chain substitution of the molecule.

16.
Chem Sci ; 11(6): 1573-1580, 2020 Jan 07.
Article in English | MEDLINE | ID: mdl-34084388

ABSTRACT

The packing structures of organic semiconductors in the solid state play critical roles in determining the performances of their optoelectronic devices, such as organic field-effect transistors (OFETs). It is a formidable challenge to rationally design molecular packing in the solid state owing to the difficulty of controlling intermolecular interactions. Here we report a unique materials design strategy based on the ß-methylthionation of acenedithiophenes to generally and selectively control the packing structures of materials to create organic semiconductors rivalling rubrene, a benchmark high-mobility material with a characteristic pitched π-stacking structure in the solid state. Furthermore, the effect of the ß-methylthionation on the packing structure was analyzed by Hirshfeld surface analysis together with theoretical calculations based on symmetry-adapted perturbation theory (SAPT). The results clearly demonstrated that the ß-methylthionation of acenedithiophenes can universally alter the intermolecular interactions by disrupting the favorable edge-to-face manner in the parent acenedithiophenes and simultaneously inducing face-to-face and end-to-face interactions in the ß-methylthionated acenedithiophenes. This "disrupt and induce" strategy to manipulate intermolecular interactions can open a door to rational packing design based on the molecular structure.

17.
RSC Adv ; 10(4): 1910-1916, 2020 Jan 08.
Article in English | MEDLINE | ID: mdl-35494617

ABSTRACT

Chemiresistive gas sensors, which exploit their electrical resistance in response to changes in nearby gas environments, usually achieve selective gas detection using multi-element sensor arrays. As large numbers of sensors are required, they often suffer from complex and high-cost fabrication. Here, we demonstrate an ambipolar organic thin-film transistor as a potential multi-gas sensing device utilizing gate-tunable gas sensing behaviors. Combining behaviors of both electron and hole carriers in a single device, the proposed device showed dynamic changes depending on gate biases and properties of target gases. As a result, the gas response as a function of gate biases exhibits a unique pattern towards a specific gas as well as its concentrations, which is very different from conventional unipolar organic thin-film transistors. In addition, our device showed an excellent air-stable characteristic compared to typical ambipolar transistors, providing great potential for practical use in the future.

18.
J Org Chem ; 85(1): 195-206, 2020 Jan 03.
Article in English | MEDLINE | ID: mdl-31762281

ABSTRACT

For developing dinaphtho[2,3-b:2',3'-f]thieno[3,2-b]thiophene (DNTT) derivatives as solution processable organic semiconductors, we synthesized 2-brominated DNTT (Br-DNTT) as a common precursor to 2-substituted DNTT derivatives. The synthesis of Br-DNTT features chemoselective metalation and cross-coupling reactions that enable us to keep the 2-bromo group intact from the starting material, 2-bromo-6-methoxynaphthalene, to Br-DNTT. We demonstrated one-step functionalization of Br-DNTT by various palladium- and copper-catalyzed cross-coupling reactions to introduce a variety of substituents, including ethynyl, aryl, heteroaryl, alkyl, alkoxy, and alkylthio groups, in yields of 73 to 98%. The resulting 12 examples of 2-substituted DNTT derivatives, which have bulky or flexible solubilizing groups, have improved solubilities of up to 200 times the solubility of unsubstituted DNTT. Some of the soluble 2-substituted DNTT derivatives were applied to the solution-processed fabrication of organic field-effect transistor (OFET) devices. Most of the OFET devices exhibited average hole mobilities in the order of 10-1 to 10-2 cm2 V-1 s-1. Among the DNTT derivatives, the one substituted with 4-(2-(2-methoxyethoxy)ethoxy)butyl group has the highest solubility of 8.45 g L-1 and also exhibited the highest average hole mobility of 0.28 cm2 V-1 s-1 in the OFET devices.

19.
Adv Mater ; 31(43): e1902407, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31512304

ABSTRACT

Molecular vibrations play a critical role in the charge transport properties of weakly van der Waals bonded organic semiconductors. To understand which specific phonon modes contribute most strongly to the electron-phonon coupling and ensuing thermal energetic disorder in some of the most widely studied high-mobility molecular semiconductors, state-of-the-art quantum mechanical simulations of the vibrational modes and the ensuing electron-phonon coupling constants are combined with experimental measurements of the low-frequency vibrations using inelastic neutron scattering and terahertz time-domain spectroscopy. In this way, the long-axis sliding motion is identified as a "killer" phonon mode, which in some molecules contributes more than 80% to the total thermal disorder. Based on this insight, a way to rationalize mobility trends between different materials and derive important molecular design guidelines for new high-mobility molecular semiconductors is suggested.

20.
Adv Mater ; 31(19): e1808033, 2019 May.
Article in English | MEDLINE | ID: mdl-30920690

ABSTRACT

Ultralightweight and flexible power sources are essential for driving textile or wearable electronic devices and soft robots because they do not induce discomfort or limit movement when they are attached to human skin, textiles, or soft actuators. Organic solar cells (OSCs) are good candidates for developing such power sources because they have the advantages of being lightweight and flexible. However, achieving operational stability and ultrathin shape simultaneously remains difficult because the ultrathin substrate cannot prevent the penetration of ultraviolet (UV) light, which is major a cause for the degradation of OSCs. Here, ultrathin OSCs that show great operational stability and high performance are reported. The 1.3 µm thick transparent polyimide utilized as a substrate can block light of 350 nm wavelength in the UV range by 90%. The ultrathin OSCs with the transparent polyimide substrate produce a power conversion efficiency (PCE) of 9.0% and realize both photostability and operational stability. The PCE was maintained at 90% after 3 h in a maximum power point tracking test, indicating much better operational stability than the reference rigid OSCs.

SELECTION OF CITATIONS
SEARCH DETAIL
...