Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 116(24): 11587-11589, 2019 06 11.
Article in English | MEDLINE | ID: mdl-31138700

ABSTRACT

Mononegaviruses are promising tools as oncolytic vectors and transgene delivery vectors for gene therapy and regenerative medicine. By using the Magnet proteins, which reversibly heterodimerize upon blue light illumination, photocontrollable mononegaviruses (measles and rabies viruses) were generated. The Magnet proteins were inserted into the flexible domain of viral polymerase, and viruses showed strong replication and oncolytic activities only when the viral polymerases were activated by blue light illumination.


Subject(s)
Measles virus/genetics , Oncolytic Viruses/genetics , Rabies virus/genetics , Animals , Cell Line, Tumor , DNA-Directed RNA Polymerases/genetics , Genetic Therapy/methods , Genetic Vectors/genetics , Humans , Light , Mice, Inbred BALB C , Mice, Nude , Oncolytic Virotherapy/methods , Transgenes/genetics , Virus Replication/genetics
2.
Mol Ther Oncolytics ; 12: 246-258, 2019 Mar 29.
Article in English | MEDLINE | ID: mdl-30891489

ABSTRACT

Oncolytic virotherapies have emerged as new modalities for cancer treatment. We previously reported that coxsackievirus B3 (CVB3) is a novel oncolytic virus (OV) with a strong ability to lyse human non-small cell lung cancer cells; however, its non-specific toxicity against normal cells remains to be resolved. To improve its safety profile, microRNA target sequences complementary to miR-34a/c, which is expressed preferentially in normal cells, were inserted into the 5' UTR or 3' UTR of the CVB3 genome. In the presence of miR-34a/c, the gene-modified CVB3 could not replicate in normal cells. We also found that the pathogenicity of CVB3 was reduced to a greater extent by targeting miR-34a than miR-34c; in addition, it was more effective to insert the target sequences into the 3' UTR rather than the 5' UTR of the viral genome. Ultimately, we developed a double-miR-34a targeting virus (53a-CVB) by inserting miR-34a targets in both the 5' UTR and 3' UTR of the virus. 53a-CVB was minimally toxic to cells in normal tissue, but maintained nearly its full oncolytic activity in mice xenografted with human lung cancer. 53a-CVB is the first miR-34-regulated OV and represents a promising platform for the development of safe and effective anti-cancer therapies.

3.
Anticancer Res ; 38(11): 6121-6126, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30396927

ABSTRACT

BACKGROUND: Colorectal cancer (CRC) is a major cause of morbidity and mortality throughout the world. It is the third most common cancer worldwide and the fourth most common cause of cancer-related death. FOLFOX, a combination of leucovorin calcium, fluorouracil, and oxaliplatin, is the first-line chemotherapy for stage III and stage IV CRC. However, patients with FOLFOX-resistant CRC have a poor prognosis. In recent years, virochemotherapy has been proposed as a potential treatment for chemotherapy-resistant cancer. MATERIALS AND METHODS: Through our first screening assay, we found that coxsackievirus A11 (CVA11) displayed potent oncolytic activities. We tested whether coxsackievirus A11 (CVA11) has oncolytic activity in human CRC cells in vitro and in vivo. We also examined whether pretreatment of oxaliplatin-resistant CRC cells with oxaliplatin enhances the oncolytic activity of CVA11. RESULTS: We found that CVA11 was potently oncolytic against the oxaliplatin-sensitive Caco-2 cell line, but had little effect on the oxaliplatin-resistant line WiDr. However, pretreatment of WiDr cells with oxaliplatin enhanced the oncolytic activity of CVA11, and the combination therapy was more cytotoxic than either oxaliplatin treatment or CVA11 infection alone. Furthermore, growth of subcutaneous WiDr tumors in a xenograft model was significantly lower in mice treated with oxaliplatin followed by intratumoral CVA11 injection compared with mice receiving either treatment alone. CONCLUSION: Oxaliplatin pretreatment sensitized oxaliplatin-resistant CRC cells to lysis by CVA11 infection in vitro and in vivo. Taken together, these findings identify a novel potential chemovirotherapeutic modality for the treatment of oxaliplatin-resistant human CRC.


Subject(s)
Colorectal Neoplasms/therapy , Enterovirus/physiology , Oncolytic Virotherapy/methods , Oxaliplatin/pharmacology , Animals , CD55 Antigens/biosynthesis , Caco-2 Cells , Cell Line, Tumor , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/virology , Combined Modality Therapy , Drug Resistance, Neoplasm , Enterovirus/drug effects , Female , Humans , Intercellular Adhesion Molecule-1/biosynthesis , Mice , Mice, Inbred BALB C , Mice, Nude , Xenograft Model Antitumor Assays
4.
J Biol Chem ; 290(33): 20071-85, 2015 Aug 14.
Article in English | MEDLINE | ID: mdl-26100630

ABSTRACT

We have generated a mouse monoclonal antibody (R-17F, IgG1 subtype) specific to human induced pluripotent stem (hiPS)/embryonic stem (ES) cells by using a hiPS cell line as an antigen. Triple-color confocal immunostaining images of hiPS cells with R-17F indicated that the R-17F epitope was expressed exclusively and intensively on the cell membranes of hiPS cells and co-localized partially with those of SSEA-4 and SSEA-3. Lines of evidence suggested that the predominant part of the R-17F epitope was a glycolipid. Upon TLC blot of total lipid extracts from hiPS cells with R-17F, one major R-17F-positive band was observed at a slow migration position close to that of anti-blood group H1(O) antigen. MALDI-TOF-MS and MS(n) analyses of the purified antigen indicated that the presumptive structure of the R-17F antigen was Fuc-Hex-HexNAc-Hex-Hex-Cer. Glycan microarray analysis involving 13 different synthetic oligosaccharides indicated that R-17F bound selectively to LNFP I (Fucα1-2Galß1-3GlcNAcß1-3Galß1-4Glc). A critical role of the terminal Fucα1-2 residue was confirmed by the selective disappearance of R-17F binding to the purified antigen upon α1-2 fucosidase digestion. Most interestingly, R-17F, when added to hiPS/ES cell suspensions, exhibited potent dose-dependent cytotoxicity. The cytotoxic effect was augmented markedly upon the addition of the secondary antibody (goat anti-mouse IgG1 antibody). R-17F may be beneficial for safer regenerative medicine by eliminating residual undifferentiated hiPS cells in hiPS-derived regenerative tissues, which are considered to be a strong risk factor for carcinogenesis.


Subject(s)
Antibodies/immunology , Cytotoxicity, Immunologic , Induced Pluripotent Stem Cells/metabolism , Oligosaccharides/immunology , Carbohydrate Sequence , Cell Line , Humans , Molecular Sequence Data , Oligosaccharides/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...