Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS Pathog ; 4(6): e1000093, 2008 Jun 20.
Article in English | MEDLINE | ID: mdl-18566662

ABSTRACT

Quorum sensing (QS) in vitro controls production of plant cell wall degrading enzymes (PCWDEs) and other virulence factors in the soft rotting enterobacterial plant pathogen Pectobacterium atrosepticum (Pba). Here, we demonstrate the genome-wide regulatory role of QS in vivo during the Pba-potato interaction, using a Pba-specific microarray. We show that 26% of the Pba genome exhibited differential transcription in a QS (expI-) mutant, compared to the wild-type, suggesting that QS may make a greater contribution to pathogenesis than previously thought. We identify novel components of the QS regulon, including the Type I and II secretion systems, which are involved in the secretion of PCWDEs; a novel Type VI secretion system (T6SS) and its predicted substrates Hcp and VgrG; more than 70 known or putative regulators, some of which have been demonstrated to control pathogenesis and, remarkably, the Type III secretion system and associated effector proteins, and coronafacoyl-amide conjugates, both of which play roles in the manipulation of plant defences. We show that the T6SS and a novel potential regulator, VirS, are required for full virulence in Pba, and propose a model placing QS at the apex of a regulatory hierarchy controlling the later stages of disease progression in Pba. Our findings indicate that QS is a master regulator of phytopathogenesis, controlling multiple other regulators that, in turn, co-ordinately regulate genes associated with manipulation of host defences in concert with the destructive arsenal of PCWDEs that manifest the soft rot disease phenotype.


Subject(s)
Genome, Bacterial , Pectobacterium/pathogenicity , Plant Diseases/microbiology , Quorum Sensing/genetics , Gene Expression Profiling , Genomics/methods , Oligonucleotide Array Sequence Analysis , Pectobacterium/genetics , Solanum tuberosum/microbiology , Virulence/genetics
2.
Arch Microbiol ; 189(2): 131-9, 2008 Feb.
Article in English | MEDLINE | ID: mdl-17846750

ABSTRACT

The Gram-positive bacterium Clavibacter michiganensis subsp. sepedonicus is the causal agent of bacterial wilt and ring rot of potato. So far, only two proteins have been shown to be essential for virulence, namely a plasmid-encoded cellulase CelA and a hypersensitive response-inducing protein. We have examined the relative expression of CelA and eight putative virulence factors during infection of potato and in liquid culture, using quantitative real-time PCR. The examined putative virulence genes were celB, a cellulase-encoding gene and genes encoding a pectate lyase, a xylanase and five homologues of the Clavibacter michiganensis subsp. michiganensis pathogenicity factor Pat-1 thought to encode a serine protease. Six of the nine assayed genes were up-regulated during infection of potato, including celA, celB, the xylanase gene, and two of the pat genes. The pectate lyase gene showed only slightly elevated expression, whereas three of the five examined pat genes were down-regulated during infection in potato. Interestingly, the two up-regulated pat genes showed a noticeable sequence difference compared to the three down-regulated pat genes. These results reveal several new proteins that are likely to be involved in Clavibacter michiganensis subsp. sepedonicus pathogenicity.


Subject(s)
Actinomycetales/genetics , Bacterial Proteins/biosynthesis , Gene Expression Profiling , Plant Diseases/microbiology , Virulence Factors/biosynthesis , Amino Acid Sequence , Bacterial Proteins/genetics , RNA, Bacterial/biosynthesis , RNA, Messenger/biosynthesis , Reverse Transcriptase Polymerase Chain Reaction , Sequence Homology, Amino Acid , Solanum tuberosum , Up-Regulation , Virulence Factors/genetics
3.
BMC Plant Biol ; 7: 50, 2007 Sep 21.
Article in English | MEDLINE | ID: mdl-17888160

ABSTRACT

BACKGROUND: Real-time RT-PCR has become a powerful technique to monitor low-abundance mRNA expression and is a useful tool when examining bacterial gene expression inside infected host tissues. However, correct evaluation of data requires accurate and reliable normalisation against internal standards. Thus, the identification of reference genes whose expression does not change during the course of the experiment is of paramount importance. Here, we present a study where manipulation of cultural growth conditions and in planta experiments have been used to validate the expression stability of reference gene candidates for the plant pathogen Pectobacterium atrosepticum, belonging to the family Enterobacteriaceae. RESULTS: Of twelve reference gene candidates tested, four proved to be stably expressed both in six different cultural growth conditions and in planta. Two of these genes (recA and ffh), encoding recombinase A and signal recognition particle protein, respectively, proved to be the most stable set of reference genes under the experimental conditions used. In addition, genes proC and gyrA, encoding pyrroline-5-carboxylate reductase and DNA gyrase, respectively, also displayed relatively stable mRNA expression levels. CONCLUSION: Based on these results, we suggest recA and ffh as suitable candidates for accurate normalisation of real-time RT-PCR data for experiments investigating the plant pathogen P. atrosepticum and potentially other related pathogens.


Subject(s)
Gene Expression Regulation, Bacterial , Genes, Bacterial/genetics , Pectobacterium carotovorum/genetics , Plant Diseases/microbiology , Reverse Transcriptase Polymerase Chain Reaction/methods , Solanum tuberosum/microbiology , Gene Expression Profiling , Reference Standards , Software
SELECTION OF CITATIONS
SEARCH DETAIL
...