Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
ACS Nano ; 17(4): 3506-3517, 2023 02 28.
Article in English | MEDLINE | ID: mdl-36745579

ABSTRACT

Molecular self- and co-assembly allow the formation of diverse and well-defined supramolecular structures with notable physical properties. Among the associating molecules, amino acids are especially attractive due to their inherent biocompatibility and simplicity. The biologically active enantiomer of l-histidine (l-His) plays structural and functional roles in proteins but does not self-assemble to form discrete nanostructures. In order to expand the structural space to include l-His-containing materials, we explored the co-assembly of l-His with all aromatic amino acids, including phenylalanine (Phe), tyrosine (Tyr), and tryptophan (Trp), all in both enantiomeric forms. In contrast to pristine l-His, the combination of this building block with all aromatic amino acids resulted in distinct morphologies including fibers, rods, and flake-like structures. Electrospray ionization mass spectrometry (ESI-MS) indicated the formation of supramolecular co-assemblies in all six combinations, but time-of-flight secondary-ion mass spectrometry (ToF-SIMS) indicated the best seamless co-assembly occurs between l-His and l-Phe while in the other cases, different degrees of phase separation could be observed. Indeed, isothermal titration calorimetry (ITC) suggested the highest affinity between l-His and l-Phe where the formation of co-assembled structures was driven by entropy. In accordance, among all the combinations, the co-assembly of l-His and l-Phe produced single crystals. The structure revealed the formation of a 3D network with nanocavities stabilized by hydrogen bonding between -N (l-His) and -NH (l-Phe). Taken together, using the co-assembly approach we expanded the field of amino acid nanomaterials and showed the ability to obtain discrete supramolecular nanostructures containing l-His based on its specific interactions with l-Phe.


Subject(s)
Histidine , Phenylalanine , Histidine/chemistry , Phenylalanine/chemistry , Amino Acids/chemistry , Amino Acids, Aromatic , Tryptophan/chemistry
2.
J Mass Spectrom ; 56(6): e4726, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33955098

ABSTRACT

Cannabis extracts and products were analyzed by gas chromatography-mass spectrometry (GC-MS) with Cold EI for their full content including terpenes, sesquiterpenes, sesquiterpinols, fatty acids, delta 9-tetrahydrocannabinol (THC), cannabidiol (CBD), other cannabinoids, hydrocarbons, sterols, diglycerides, triglycerides, and impurities. GC-MS with Cold EI is based on interfacing GC and MS with supersonic molecular beams (SMB) along with electron ionization of vibrationally cold sample compounds in the SMB in a fly-through ion source (hence the name Cold EI). GC-MS with Cold EI improves all the performance aspects of GC-MS, enables the analysis of Cannabinoids with OH groups without derivatization, while providing enhanced molecular ions for improved identification, and enables internal quantitation without calibration. We found over 50 cannabinoid compounds including a new one with a Cold EI mass spectrum very similar to delta 9-THC as well as relatively large cannabinoids with molecular weight above m/z = 400. Because the analysis was universal in full scan and not targeted, we found impurities such as bromo CBD and fluticasone propionate and could monitor the formation of oxidized CBD during decarboxylation. In addition, GC-MS with Cold EI enabled nontargeted full analysis of terpenes, sesquiterpenes, and sesquiterpinols in cannabis extracts with good internal quantitation. GC-MS with Cold EI further served with very good sensitivity for the concentration determination of delta 9-THC in CBD-related products. Finally, cannabis drugs such as EP-1 used in Israel for treatment of epilepsy and for children with autism spectrum disorder (ASD) were analyzed for their full cannabinoids content for learning on the entourage effect and for drug activity optimization.


Subject(s)
Cannabinoids/analysis , Cannabis/chemistry , Gas Chromatography-Mass Spectrometry/methods , Decarboxylation , Fluticasone/analysis , Sesquiterpenes/analysis , Sterols/analysis , Terpenes/analysis
3.
Angew Chem Int Ed Engl ; 58(16): 5302-5306, 2019 Apr 08.
Article in English | MEDLINE | ID: mdl-30786135

ABSTRACT

We describe the preparation of the first water-soluble pH-responsive supramolecular hexagonal boxes (SHBs) based on multiple charge-assisted hydrogen bonds between peramino-pillar[6]arenes 2 with the molecular "lid" mellitic acid (1 a). The interaction between 2 and 1 a, as well as the other "lids" pyromellitic and trimesic acids (1 b and 1 c, respecively) were studied by a combination of experimental and computational methods. Interestingly, the addition of 1 a to the complexes of the protonated form of pillar[6]arene 2, that is, 3, with bis-sulfonate 4 a or 4 b, immediately led to guest escape along with the formation of closed 1 a2 2 supramolecular boxes. Moreover, the process of the openning and closing of the supramolecular boxes along with threading and escaping of the guests, respectively, was found to be reversible and pH-responsive. This study paves the way for the easy and modular preparation of different SHBs that may have myriad applications.

4.
Materials (Basel) ; 11(11)2018 Oct 29.
Article in English | MEDLINE | ID: mdl-30380643

ABSTRACT

Epoxy resins have a wide range of applications, including in corrosion protection of metals, electronics, structural adhesives, and composites. The consumption of epoxy resins is predicted to keep growing in the coming years. Unfortunately, thermoset resins cannot be recycled, and are typically not biodegradable. Hence, they pose environmental pollution risk. Here, we report degradation of epoxy resin by two bacteria that are capable of using epoxy resin as a sole carbon source. These bacteria were isolated from soil samples collected from areas around an epoxy and polyurethanes manufacturing plant. Using an array of molecular, biochemical, analytical, and microscopic techniques, they were identified as Rhodococcus rhodochrous and Ochrobactrum anthropi. As epoxy was the only carbon source available for these bacteria, their measured growth rate reflected their ability to degrade epoxy resin. Bacterial growth took place only when the two bacteria were grown together, indicating a synergistic effect. The surface morphology of the epoxy droplets changed significantly due to the biodegradation process. The metabolic pathway of epoxy by these two microbes was investigated by liquid chromatography mass spectrometry. Bisphenol A, 3,3'-((propane-2,2-diylbis(4,1-phenylene))bis(oxy))bis(propane-1,2-diol) and some other constituents were identified as being consumed by the bacteria.

5.
Psychophysiology ; 55(11): e13215, 2018 11.
Article in English | MEDLINE | ID: mdl-30094856

ABSTRACT

Saccades constitute a major source of artifacts and confounds in brain imaging studies. Whereas some artifacts can be removed by omitting segments of data, saccadic artifacts cannot be typically eliminated by this method because of their high occurrence rate even during fixation (1-3 per second). Some saccadic artifacts can be alleviated by offline-correction algorithms, but these methods leave nonnegligible residuals and cannot mitigate the saccade-related visual activity. Here, we propose a novel yet simple approach for diminishing saccadic artifacts and confounds through experimental design. We suggest that specific tasks can lead to substantially less saccade occurrences around the time of stimulus presentation, starting from slightly before its onset and lasting for a few hundred milliseconds. In three experiments, we compared the frequency and size of saccades in a variety of tasks. Results of Experiment 1 showed that a foveal change-detection task reduced the number and sizes of saccades, relative to a parafoveal orientation-discrimination task. Experiment 2 replicated this finding with a parafoveal object recognition task. Experiment 3 showed that both foveal and parafoveal continuous change detection tasks induced fewer and smaller saccades than a discrete orientation-discrimination task. We conclude that adding a foveal or a parafoveal continuous task reduces saccades' number and size. This would lead to better artifact correction and enable the omission of contaminated data segments. This study may be the first step toward developing saccade-free experimental designs.


Subject(s)
Artifacts , Discrimination, Psychological/physiology , Electroencephalography/standards , Eye Movement Measurements/standards , Fovea Centralis/physiology , Neuroimaging/standards , Research Design/standards , Saccades/physiology , Visual Perception/physiology , Adult , Female , Humans , Male , Young Adult
7.
Biochem J ; 473(23): 4413-4426, 2016 12 01.
Article in English | MEDLINE | ID: mdl-27647935

ABSTRACT

Ornidazole of the 5-nitroimidazole drug family is used to treat protozoan and anaerobic bacterial infections via a mechanism that involves preactivation by reduction of the nitro group, and production of toxic derivatives and radicals. Metronidazole, another drug family member, has been suggested to affect photosynthesis by draining electrons from the electron carrier ferredoxin, thus inhibiting NADP+ reduction and stimulating radical and peroxide production. Here we show, however, that ornidazole inhibits photosynthesis via a different mechanism. While having a minute effect on the photosynthetic electron transport and oxygen photoreduction, ornidazole hinders the activity of two Calvin cycle enzymes, triose-phosphate isomerase (TPI) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Modeling of ornidazole's interaction with ferredoxin of the protozoan Trichomonas suggests efficient electron tunneling from the iron-sulfur cluster to the nitro group of the drug. A similar docking site of ornidazole at the plant-type ferredoxin does not exist, and the best simulated alternative does not support such efficient tunneling. Notably, TPI was inhibited by ornidazole in the dark or when electron transport was blocked by dichloromethyl diphenylurea, indicating that this inhibition was unrelated to the electron transport machinery. Although TPI and GAPDH isoenzymes are involved in glycolysis and gluconeogenesis, ornidazole's effect on respiration of photoautotrophs is moderate, thus raising its value as an efficient inhibitor of photosynthesis. The scarcity of Calvin cycle inhibitors capable of penetrating cell membranes emphasizes on the value of ornidazole for studying the regulation of this cycle.


Subject(s)
Bacteria, Anaerobic/drug effects , Ornidazole/pharmacology , Photosynthesis/drug effects , Cyanobacteria/drug effects , Ferredoxins/metabolism , Glyceraldehyde-3-Phosphate Dehydrogenase (Phosphorylating)/metabolism , Glyceraldehyde-3-Phosphate Dehydrogenases/metabolism , Glycolysis , Metronidazole/pharmacology , Models, Biological , Synechocystis/drug effects , Trichomonas/drug effects , Trichomonas/metabolism , Triose-Phosphate Isomerase/metabolism
8.
J Biomed Mater Res B Appl Biomater ; 91(2): 819-830, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19582851

ABSTRACT

Drug-eluting stents (DES) have become an accepted technology in intravascular intervention. Manufacturing methodologies of DES are based mainly on mechanical processes, which tend to generate coatings that have poor stability properties; these were recently related as a potential hazard. A novel approach for significantly increasing the adhesion of polymer coatings onto DES is presented. The method is based on the electrochemistry of diazonium salts. These substances are organic compounds with the characteristic structure of R-N(2) (+) X(-), where R is an organic residue and X(-) is an anion. The objective of this article is to study the properties of a selected diazonium salt 4-(1-dodecyloxy)-phenyldiazonium tetrafluoroborate, referred as C(12)-phenyldiazonium. This material was found to be a superior adhesive promoter for polymeric coatings applied onto metallic stents. C(12)-phenyldiazonium was synthesized and electrocoated on metallic stents and plates. The multilayer films of C(12)-phenyldiazonium were further characterized through electrochemical (cyclic voltammetry, impedance spectroscopy), physical (light and scanning electron microscopy, X-ray photoelectron spectroscopy, peeling tests), and chemical methodology (high pressure liquid chromatography). Further biocompatibility properties of the electrocoated basecoat were evaluated using in vitro and in vivo models. Synthesized C(12)-phenyldiazonium was successfully electrocoated onto metallic surfaces. Electrochemical tests demonstrated its efficient and controllable electrocoating. C(12)-phenyldiazonium was found to increase polymeric coating stability as was reflected by a standard adhesion test. Electrocoated metallic stents spray-coated with a second polymeric film showed improved durability following incubation in physiological buffer. Furthermore, this improvement in durability exhibits stabilized drug release. In addition, biocompatibility evaluations have demonstrated basecoat's inert properties.


Subject(s)
Coated Materials, Biocompatible , Drug-Eluting Stents , Adhesiveness , Angioplasty, Balloon , Animals , Antineoplastic Agents, Phytogenic/administration & dosage , Antineoplastic Agents, Phytogenic/chemistry , Benzene Derivatives/chemistry , Blood Vessels/growth & development , Blood Vessels/ultrastructure , Cell Adhesion , Cell Survival/drug effects , Diazonium Compounds/chemistry , Electric Impedance , Electrochemistry , Fullerenes/chemistry , Hemolysis/drug effects , In Vitro Techniques , Materials Testing , Metals/chemistry , Microscopy, Electron, Scanning , Paclitaxel/administration & dosage , Paclitaxel/chemistry , Polymers , Rabbits , Spectrometry, X-Ray Emission
9.
ACS Appl Mater Interfaces ; 1(4): 758-67, 2009 Apr.
Article in English | MEDLINE | ID: mdl-20356000

ABSTRACT

The coating of medical implants by polymeric films aims at increasing their biocompatibility as well as providing a durable matrix for the controlled release of a drug. In many cases, the coating is divided into a primer layer, which bridges between the medical implant and the drug-eluting matrix. The primer coating must be very carefully designed in order to provide optimal interactions with the surface of the medical implant and the outer layer. Here we present a simple and versatile approach for designing the primer layer based on electropolymerization of a carefully chosen blend of three different pyrrole derivatives: N-methylpyrrole (N-me), N-(2-carboxyethyl)pyrrole (PPA), and the butyl ester of N-(2-carboxyethyl)pyrrole (BuOPy). The composition and physical properties of the primer layer were studied in detail by atomic force microscopy (AFM) and a nano scratch tester. The latter provides the in-depth analysis of the adhesion and viscoelasticity of the coating. AFM phase imaging reveals a uniform distribution of the three monomers forming rough morphology. This primer layer significantly improved the morphology, stability, and paclitaxel release profile of a paclitaxel-eluting matrix based on methyl and lauryl methacrylates.


Subject(s)
Blood Vessel Prosthesis , Coated Materials, Biocompatible/chemistry , Drug-Eluting Stents , Paclitaxel/administration & dosage , Paclitaxel/chemistry , Polymers/chemistry , Pyrroles/chemistry , Absorption , Electrochemistry/methods , Equipment Design , Equipment Failure Analysis , Hardness , Materials Testing , Surface Properties
10.
ACS Appl Mater Interfaces ; 1(11): 2519-28, 2009 Nov.
Article in English | MEDLINE | ID: mdl-20356122

ABSTRACT

Drug-eluting stents (DESs) have been associated with adverse clinical effects. Moreover, recent publications have shown that the coating of DESs suffers from defects. The purpose of this contribution is to examine a three-step process for surface modification as a means of improving the durability of DESs. In the first step, 4-(2-bromoethyl)benzenediazonium tetrafluoroborate was electrografted onto a stainless steel (SS) stent. X-ray photoelectron spectroscopy (XPS) of the modified stent confirmed the formation of the organic layer. In the second step, methyl methacrylate was polymerized onto the grafted surface by atom-transfer radical polymerization. XPS, electrochemical impedance spectroscopy, and contact-angle measurements were used to characterize the polymer brushes. The last step involved spray-coating of the stent with a drug-in-polymer matrix [poly(n-butyl methacrylate)/poly(ethylene-co-vinyl acetate) + paclitaxel]. Scanning electron microscopy confirmed the considerably improved durability of the drug-in-polymer matrix. Bare controls showed greater cracking and delamination of the coating than did the two-step modified stents after incubation under physiological (37 degrees C) and accelerated (60 degrees C) conditions. Finally, paclitaxel controlled release from the modified SS DESs was moderate compared with that of nontreated samples. In conclusion, the proposed method significantly improves the durability of drug-in-polymer matrixes on a SS DESs.


Subject(s)
Drug-Eluting Stents , Paclitaxel/pharmacology , Polymethyl Methacrylate/chemistry , Stainless Steel/chemistry , Borates , Boric Acids/chemistry , Buffers , Delayed-Action Preparations/pharmacology , Electrochemical Techniques , Microscopy, Electron, Scanning , Molecular Weight , Photoelectron Spectroscopy , Surface Properties/drug effects , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...