Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Biomed Mater Res A ; 111(8): 1151-1160, 2023 08.
Article in English | MEDLINE | ID: mdl-36651651

ABSTRACT

Bioengineered corneal substitutes offer a solution to the shortage of donor corneal tissue worldwide. As one of the major structural components of the cornea, collagen has shown great potential for tissue-engineered cornea substitutes. Herein, free-standing collagen membranes fabricated using electro-compaction were assessed in corneal bioengineering application by comparing them with nonelectro-compacted collagen (NECC). The well-organized and biomimetic fibril structure resulted in a significant improvement in mechanical properties. A 10-fold increase in tensile and compressive modulus was recorded when compared with NECC membranes. In addition to comparable transparency in the visible light range, the glucose permeability of the electro-compacted collagen (ECC) membrane is higher than that of the native human cornea. Human corneal epithelial cells adhere and proliferate well on the ECC membrane, with a large cell contact area observed. The as-described ECC has appropriate structural, topographic, mechanical, optical, glucose permeable, and cell support properties to provide a platform for a bioengineered cornea; including the outer corneal epithelium and potentially deeper corneal tissues.


Subject(s)
Epithelium, Corneal , Humans , Tissue Engineering/methods , Cornea , Collagen/chemistry , Glucose
2.
J Biomed Mater Res B Appl Biomater ; 111(3): 526-537, 2023 03.
Article in English | MEDLINE | ID: mdl-36269163

ABSTRACT

Hydrogel materials are promising candidates in cartilage tissue engineering as they provide a 3D porous environment for cell proliferation and the development of new cartilage tissue. Both the mechanical and transport properties of hydrogel scaffolds influence the ability of encapsulated cells to produce neocartilage. In photocrosslinkable hydrogels, both of these material properties can be tuned by changing the crosslinking density. However, the interdependent nature of the structural, physical and biological properties of photocrosslinkable hydrogels means that optimizing composition is typically a complicated process, involving sequential and/or iterative steps of physiochemical and biological characterization. The combinational nature of the variables indicates that an exhaustive analysis of all reasonable concentration ranges would be impractical. Herein, response surface methodology (RSM) was used to efficiently optimize the composition of a hybrid of gelatin-methacryloyl (GelMA) and hyaluronic acid methacryloyl (HAMA) with respect to both mechanical and transport properties. RSM was employed to investigate the effect of GelMA, HAMA, and photoinitiator concentration on the shear modulus and diffusion coefficient of the hydrogel membrane. Two mathematical models were fitted to the experimental data and used to predict the optimum hydrogel composition. Finally, the optimal composition was tested and compared with the predicted values.


Subject(s)
Gelatin , Hydrogels , Hydrogels/chemistry , Gelatin/chemistry , Hyaluronic Acid , Methacrylates/chemistry , Tissue Engineering/methods , Tissue Scaffolds/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...