Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
MedComm (2020) ; 2(2): 175-206, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34766141

ABSTRACT

Nasopharyngeal carcinoma (NPC) is a squamous carcinoma with apparent geographical and racial distribution, mostly prevalent in East and Southeast Asia, particularly concentrated in southern China. The epidemiological trend over the past decades has suggested a substantial reduction in the incidence rate and mortality rate due to NPC. These results may reflect changes in lifestyle and environment, and more importantly, a deeper comprehension of the pathogenic mechanism of NPC, leading to much progress in the preventing, screening, and treating for this cancer. Herein, we present the recent advances on the key signal pathways involved in pathogenesis of NPC, the mechanism of Epstein-Barr virus (EBV) entry into the cell, and the progress of EBV vaccine and screening biomarkers. We will also discuss in depth the development of various therapeutic approaches including radiotherapy, chemotherapy, surgery, targeted therapy, and immunotherapy. These research advancements have led to a new era of precision medicine in NPC.

2.
ACS Nano ; 14(3): 2827-2846, 2020 03 24.
Article in English | MEDLINE | ID: mdl-32049495

ABSTRACT

Therapy for intracerebral hemorrhage (ICH) remains elusive, in part dependent on the severity of the hemorrhage itself as well as multiple deleterious effects of blood and its breakdown products such as hemin and free iron. While oxidative injury and genomic damage have been seen following ICH, the details of this injury and implications remain unclear. Here, we discovered that, while free iron produced mostly reactive oxygen species (ROS)-related single-strand DNA breaks, hemin unexpectedly induced rapid and persistent nuclear and mitochondrial double-strand breaks (DSBs) in neuronal and endothelial cell genomes and in mouse brains following experimental ICH comparable to that seen with γ radiation and DNA-complexing chemotherapies. Potentially as a result of persistent DSBs and the DNA damage response, hemin also resulted in senescence phenotype in cultured neurons and endothelial cells. Subsequent resistance to ferroptosis reported in other senescent cell types was also observed here in neurons. While antioxidant therapy prevented senescence, cells became sensitized to ferroptosis. To address both senescence and resistance to ferroptosis, we synthesized a modified, catalytic, and rapidly internalized carbon nanomaterial, poly(ethylene glycol)-conjugated hydrophilic carbon clusters (PEG-HCC) by covalently bonding the iron chelator, deferoxamine (DEF). This multifunctional nanoparticle, DEF-HCC-PEG, protected cells from both senescence and ferroptosis and restored nuclear and mitochondrial genome integrity in vitro and in vivo. We thus describe a potential molecular mechanism of hemin/iron-induced toxicity in ICH that involves a rapid induction of DSBs, senescence, and the consequent resistance to ferroptosis and provide a mechanistic-based combinatorial therapeutic strategy.


Subject(s)
Carbon/pharmacology , Cerebral Hemorrhage/drug therapy , Nanoparticles/chemistry , Animals , Cell Differentiation/drug effects , Cells, Cultured , Cellular Senescence/drug effects , Cerebral Hemorrhage/genetics , Cerebral Hemorrhage/metabolism , DNA Breaks, Single-Stranded/drug effects , DNA Damage , Deferoxamine/pharmacology , Hemin/antagonists & inhibitors , Hemin/pharmacology , Humans , Iron/pharmacology , Mice , Mitochondria/drug effects , Polyethylene Glycols/pharmacology , Reactive Oxygen Species/metabolism
3.
Sci Rep ; 8(1): 11920, 2018 08 09.
Article in English | MEDLINE | ID: mdl-30093732

ABSTRACT

In the long term, diabetes profoundly affects multiple organs, such as the kidney, heart, brain, liver, and eyes. The gradual loss of function in these vital organs contributes to mortality. Nonetheless, the effects of diabetes on the lung tissue are not well understood. Clinical and experimental data from our studies revealed that diabetes induces inflammatory and fibrotic changes in the lung. These changes were mediated by TGF-ß-activated epithelial-to-mesenchymal transition (EMT) signaling pathways. Our studies also found that glucose restriction promoted mesenchymal-to-epithelial transition (MET) and substantially reversed inflammatory and fibrotic changes, suggesting that diabetes-induced EMT was mediated in part by the effects of hyperglycemia. Additionally, the persistent exposure of diabetic cells to high glucose concentrations (25 mM) promoted the upregulation of caveolin-1, N-cadherin, SIRT3, SIRT7 and lactate levels, suggesting that long-term diabetes may promote cell proliferation. Taken together, our results demonstrate for the first time that diabetes induces fibrotic changes in the lung via TGF-ß1-activated EMT pathways and that elevated SMAD7 partially protects the lung during the initial stages of diabetes. These findings have implications for the management of patients with diabetes.


Subject(s)
Diabetes Mellitus/genetics , Pulmonary Fibrosis/genetics , Signal Transduction/genetics , Transforming Growth Factor beta1/genetics , Animals , Diabetes Mellitus/metabolism , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Epithelial-Mesenchymal Transition/drug effects , Epithelial-Mesenchymal Transition/genetics , Gene Expression Regulation/drug effects , Glucose/pharmacology , Humans , Kidney/drug effects , Kidney/metabolism , Kidney/pathology , Lung/drug effects , Lung/metabolism , Lung/pathology , Male , Pulmonary Fibrosis/metabolism , Rats, Wistar , Signal Transduction/drug effects , Smad7 Protein/genetics , Smad7 Protein/metabolism , Transforming Growth Factor beta1/metabolism , Transforming Growth Factor beta1/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...